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Multivariate Statistics’  main purpose is to define and subsequently statistically 

validate models of  mathematical relationships among a finite set of  “measurable 

attributes” (variables)  {X1 , . . . , Xn } characterizing  a certain domain of 

investigation. 

Within this general frame we take into consideration  the “best fitting “ problem,  

where the measurable attributes are subdivided into a subset of “independent or 

explanatory variables” {X1 , . . . , Xp }  and another subset {Y1 , . . . , Yq } of 

“dependent variables”;  a mathematical model of functional dependence of the Y’s 

variables on the X’s is  introduced, together with an optimality criterion  allowing for 

the determination of the numerical values of the parameters present in the model on 

the base of  available experimental data. A distinct sample of experimental data will 

allow for the statistical validation of the model.  

Let us now consider the case of “linear least squares best fitting”, with a single 

dependent variable Y and a set  {X1 , . . . , Xp } of dependent variables . 

 

Given a sample of experimental data { (x i 1 ,  . .  , xi p ,  y i ) } , i = 1 , . . . , N  and the 

mathematical model of  linear dependence  of Y on the X’s  :  

 

Y =  1  X 1 + . . .  +   p  X p +    , 

 

(where  1 , . . . ,  p ,   are the model’s parameters) , the optimality criterion for the 

determination of the numerical values of parameters is the minimization of the total 

sum of squares of residuals 

 

F ( 1  , . . .  ,   p ,  ) =  i  [y i  - y’i] 
2
 

 

where the { y’i } are the estimated values of the dependent variable Y, obtained 

according to the relation : 

 

y’i =  1  x i 1 + . . .  +   p  xi p +  , I = 1, . . . , N 

 

 

 

A possible solution of this problem, in the absence of mathematical constraints on 

the parameters  is the “analytical” one, is obtained through the vector  differential 

equation 

grad F = 0   ,  

 

equivalent to the system of linear differential equations 

 

F /   1  = 0 , . . .  , F /   p  = 0 , F /    = 0 



leading to the solution of the  system of linear equations : 

 

 

var (X1 )  1  + covar (X1, X2 )  2  + . . . + covar (X1, Xp )  p  = covar (X1, Y ) 

 

.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 

 

covar (Xp, X1 )  1  +  covar (Xp,X2 )  2  +  . . . + var (Xp )  p  = covar (Xp, Y ) 

 

 

together with the relation : 

 

 = E(Y)  -  1  E(X1 ) - . . . -  p  E(Xp )   , 

 

where E(Y) , E(X1 ) , . . . , E(Xp )   are  the expected values (i.e.the arithmetic means) 

and var (X1 ), . . . , var (Xp ) , covar (X1, X2 ), . . . , covar (Xp, Y ) are the variances 

and the covariances  of the variables considered above. 

 

An equivalent approach is offered by the introduction of a Hilbert spaces  on these 

variables and the subsequent use of the so-called  orthogonality principle, as it will be 

shown in what follows. 

 

Given a Probability Space and a generic set of random variables  V1 , . . . , Vk   with 

finite expected values E(V1) , . . . , E(Vk) and a non singular  

variance-covariance matrix B (i.e. det B  0 ) : 

 

var (V1 )             covar (V1, V2 )  . . .     covar (V1, Vk) 

 

B =                       .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 

 

covar (Vk , V1 )   covar (Vk ,V2 )   . . .         var (Vk ) 

 

 

and finally assuming, for the sake of simplicity,   E(V1) = . . . =  E(Vk) = 0 , we  define 

the norms of these r.v.’s : 

 

 V1  = var (V1) 
1/2

 , . . . ,   Vk  = var (Vk) 
1/2

 

 

 and their « scalar products » : 

 

< Vr , Vs > = covar (Vr ,Vs ) , r, s = 1 , . . . , k 

 

in such a way that 

 

 Vr  = < Vr , Vr > 
½  

 . 

 



 

The scalar product that we just defined satisfies the following  properties: 

 

1)   < x , y > = < y , x > , 

2)   < x , y + z > = < x , y > + <x , z >  

3) < x , y > =    < x , y >  (where  is an arbitrary real number, called scalar) 

4) < x , x >  0  , < x , x > = 0   x = 0    . 

 

We say that x , y are orthogonal   if  < x , y > = 0  while their norms are positive.  

 

 

The set of random variables  {V1 ,  . . . , Vk }  with the  scalar product defined above 

constitutes a “Hilbert Space” of finite dimension k . 

 

Given a sub-set  {X1 , . . .  , Xp }  ( p  k )  such that the determinant of their 

variance-covariance matrix  0 ,  we define as linear variety   L[X1 , . . .  , Xp ] 

the set of all their possible linear combinations 

 

 1  X 1 + . . .  +   p  X p 

 

where  1 , . . . ,  p  are arbitrary real numbers. 

 

Considering now a generic random variable . Y of the same Hilbert Space ,  we 

define  as its orthogonal projection Y’ on  L[X1 , . . .  , Xp ]  the random variable  

Y’  of  L[X1 , . . .  , Xp ] , i.e. Y’ =  1  X 1 + . . .  +   p  X p , such that it satisfies the 

following orthogonality conditions:  

 

                    < Y – Y’ , X 1  > = 0  , . . . ,    < Y – Y’ , X p  > = 0   

  

This relations are equivalent to the system of equations: 

 

< X 1 ,  X 1 >   1 +  < X 1 ,  X 2 >   2 +  . . . +  < X 1 ,  X p >   p  =  < X 1 ,  Y >     

   

. . . . . . . . . . . . . . . 

 

< X p ,  X 1 >   1 +  < X p ,  X 2 >   2 +  . . . +  < X p ,  X p >   p  =  < X p ,  Y >     

 

 

Orthogonality principle : the orthogonal projection Y’ on L[X1 , . . .  , Xp ]  exists and 

is unique and satisfies the minimality condition 

                                                            

 Y – (* 1  X 1 + . . .  +  * p  X p )  = min 

 

The values of  (* 1  ,  . . .  ,   * p   ) satisfy the system of linear equations : 

written above. 

 



This system of linear equation is the same written before in terms of variances and 

covariances ! 

 

TO BE NOTICED : we can easily extend the concept of Hilbert space to random 

variables with expected  values  0 :  it will be sufficient in this case to associate to 

them the r. v.  X’1 = X1 – E(X1 ) , . . . , X’p = Xp – E(Xp ), Y’ = Y – E(Y)  and thereafter 

apply for these new random variables the procedure illustrated before ! 


