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Abstract

Full waveform inversion (FWI) is a high-
resolution seismic imaging technique that is
based on using the entire content of seismic
traces for extracting physical parameters of the
medium sampled by seismic waves. The wide-
spread strategy of seismic imaging, the single
scattering formulation, at the core of FWI, as-
sumes no prior scale in the model description.
Each unexplained residual data sample at receiv-
ers for one source is assumed to come from any
point of the medium, and only the summation
over sources and receivers helps in locating me-
dium property anomalies, regardless of what
type of phase is involved. This pixel-oriented
perturbation leads to the local optimization ap-
proach, which is a linearized differential ap-
proach based on the Newton equation. For a
least-squares misfit function, there are both the
gradient vector and Hessian matrix, in addition
to approximations that can be considered for
the related Newton equation. The forward prob-
lem of the wave propagation, used thousands of
times during optimization, should be efficient,
and these equations are expressed either as a
first-order hyperbolic system of velocity-stress or
as a second-order hyperbolic system of displace-
ment (or velocity) only, by using a self-adjoint
formulation in both cases. Gradient vectors are
built as a zero-lag crosscorrelation in time be-
tween incident and adjoint wavefields with for-
ward and backward patterns and also could be

used for obtaining Hessian-matrix approxima-
tions. Resolution and uncertainties are relevant,
although the actual state of the art does not pro-
vide meaningful estimation of these quantities:
the FWI remains a deterministic approach at
this time. An examplary North Sea data set from
the Valhall reservoir illustrates the successful
story for high-resolution imaging based on data-
driven components, with paleorivers stored in
sediments, imprints of glaciers in the bedrock,
and gas clouds at different scales in the image.
Alternative sources of information on the medi-
um, such as sonic logs and geologic interpreta-
tion, are illustrated through a model-driven
component of the misfit function. Although
methods can be used to increase the speed of the
workflow, they are quite costly. The multiparam-
eter reconstruction, which is mandatory for
elastic FWI, starts to be feasible if one improves
the Hessian-matrix influence. Thus, FWI is be-
coming a mature strategy for high-resolution
seismic imaging.

Introduction

Remote-sensing methods are essential for
characterizing the interior of the Earth at differ-
ent scales, from the shallow subsurface to the
inner core. Interaction between seismic waves
and matter is expected to provide the highest
resolution of these indirect osculating physical
methods, compared with the results from gra-
vimetry, geomagnetism, or electromagnetism.
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Natural events, such as earthquakes, make the
problem quite challenging because one also
needs to characterize the sources, whereas con-
trolled-source seismology focuses mainly on re-
construction of the structure.

During the rapid growth of seismic imaging
methods over the last 50 years, two types of in-
teractions have been identified. The first is a
smooth interaction between waves and the me-
dium that occurs where wave directions are
slightly deviated by variations of the medium
properties. One can assume that small variations
in the wavefront result from this type of interac-
tion, thereby allowing waves to continue to
propagate forward after the interaction, in a for-
ward scattering that is related to a transmission
regime. The second is a rough interaction that
occurs where wave directions are significantly
modified by medium properties, resulting in a
backward scattering that is related to a reflection
regime; after that interaction the waves move
backward. For example, reflection waves have a
completely different direction of propagation,
compared with that of the incident wave. Waves
are bounced back toward the receiver position.
One phase may mix both interactions during its
propagation inside the medium. Other types of
interactions could contribute to the model up-
dating, in the form of multiple scattering effects,
and could lead to a diffusive regime that requires
other strategies for model building (Wu, 1985;
Wu and Aki, 1988). Let us point out that forward
modeling will introduce these multiple scatter-
ing and diffusive effects for the current model if
there are corresponding heterogeneities.

These two types of interaction can be ob-
served on the hierarchical organization of seis-
mograms or traces (Figure 1). For a smooth inter-
action, traveltimes of a given phase could vary
smoothly, whereas different bursts of energy oc-
curing along the time axis characterize the rough
interaction. These two probing interactions of
medium properties have led naturally to two
strategies for imaging the medium. The first type
of reconstruction is based on tomographic ap-
proaches in which one tries to reconstruct the
smoothly varying properties of the medium by
tracking essentially slow variations of phases (or
traveltimes). Thus, for these analyses, we have
many approaches depending on the phases we
consider as first-arrival phases, refraction phas-
es, reflection phases, or surface-wave phases,
among the various possible phases (combining

these approaches improves the reconstruction)
(Thurber and Ritsema, 2007). For example, first-
arrival phases have inflections, as do the reflec-
tion phases, leading to traveltime tomographies.
Reflection phases exhibit this smooth interac-
tion on their downward and upward paths,
along with the rough interaction at the interface
or at diffracting points.

The second type of reconstruction is based on
the so-called migration, either in time or in space,
connected with Huygens’ principle in which
rapid variations of medium properties are tenta-
tively reconstructed. Recent formulations have
improved such imaging toward more quantita-
tive estimations of the medium properties, such
as least-squares migration (Nemeth et al., 1999).
A related tool is amplitude-variation-with-offset
(AVO) or amplitude-variation-with-angle (AVA)
analysis, which characterizes a target zone from a
single phase (Demirbag et al., 1993; Ursin and
Ekren, 1995; Gray et al., 1998).

Considering the wavenumber domain, de-
duced by applying a Fourier transformation from
the space domain, the low-wavenumber content
is investigated by traveltime tomographic meth-
ods, whereas the high-wavenumber content is
built by migration methods. Claerbout (1985)
gives a simple presentation of such reconstruc-
tions, essentially along the depth direction,
showing a poor reconstruction of intermediate
wavenumber ranges (Figure 2). Are seismic waves
inadequately sensitive to intermediate wave-
number ranges or are we designing standard imag-
ing approaches that are not sensitive to interme-
diate wavenumbers? What seismic-trace infor-
mation should we consider for building the
low-wavenumber content? What information do
we need for the high-wavenumber content? Do
we need additional information, especially when
we try to extend the two zones at the limit of the
expected resolution of seismic data?

Tarantola (1984) has investigated an approach
for avoiding this distinction between the expect-
ed smooth and rough interactions. On the basis
of the single scattering formalism, all phases are
considered under the same type of interaction
(Devaney, 1984), regardless of the modification of
the wave propagation induced by the properties
of the medium. This formalism for updating the
medium properties is embedded into the linear-
ized approach called full waveform inversion
(FWI); under the same concept of wave/medium
interaction (each piece of information in the data
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Figure 2. Extraction percentage of vertical model
variation when considering the vertical component
k, of the wavenumber vector. Tomographic tools
reconstruct the smooth part of the velocity structure,
whereas migration tools reconstruct the contrasted
part of the velocity structure. There is an apparent
insensitivity at intermediate values of wavenumbers.
After Figure 1.4-3 of Claerbout (1985). Used by
courtesy of J. Claerbout.

domain the same way), one should consider all
phases contained in the traces for imaging. Any
type of propagation should be taken into consid-
eration in the same way for model updating. The
multiple interactions of waves with the medium
come only when the forward modeling is per-
formed.

The key point of such a formulation derives
from a unique way of considering the interac-
tion between waves and matter. No prior scale
separation is considered in this imaging strategy.
Still, FWI is a linearized formulation in which
the nonlinearity of waves with respect to the
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Figure 1. Common shot gather with different organized hierarchies in the time recording. Among these
hierarchies, bursts of energy with reflection phases (yellow curves) express the reflection regime with time

delays, whereas undulations visible both on direct waves (red curves) and on hyperbolic branches of reflected
phases (yellow curves) identify the transmission regime.

medium properties is introduced by the wave-
propagation engine. In our approach we do not
use any linearization of the forward modeling —
such as the linear Born approach — which is
considered in migration approaches. When we
reconstruct our model by beginning with an ini-
tial model and revising it iteratively, nonlineari-
ty is implicitly introduced by repeated exact for-
ward modeling at each update stage. We also
point out that the misfit between observed data
and synthetic data is a continuous function that
will behave well locally, thereby allowing the in-
troduction of the stochastic optimization ap-
proach under the Bayesian approximation, as
Tarantola (1987) promoted.

We shall first consider the prior assumption
of the single scattering approach, in which no
scale separation is used. We then discuss what is
the associated forward problem performed in
the current model (not the initial model), so that
we can provide practical measures for updating
the model. We highlight the components neces-
sary for seismic imaging, leaving the technical
description of the adjoint formulation to the
Appendix. We next discuss the resolution and
uncertainty estimation in this context of a deter-
ministic approach. We have all of the required
elements for an illustration of full waveform in-
version, and we highlight FWI results obtained
for the Valhall reservoir in the North Sea by dif-
ferent groups.
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We need to start from an initial model, but
the challenging issue of defining that model has
required many tentative strategies that we shall
recall for possible future investigation by the
reader. We prefer to focus on a specific one that
is driven by the usual concepts of seismic imag-
ing. This strategy may give the reader a better,
more practical understanding of how full wave-
form inversion works. Because full waveform in-
version is a heavily computational task, we brief-
ly present strategies for speeding up the algorith-
mic aspect of the total workflow, regardless of
the possible hardware solutions to be considered.
Requirements for multiparameter reconstruction
are analyzed and should lead scientists to con-
centrate future research efforts on the Hessian
matrix. Different imprints of the parameters in-
side the data, and the possible tradeoffs among
the parameters, will be near-future challenges of
full waveform inversion. With that, we conclude
our examination of this important technique,
which has found its place in tools deployed by
the seismic community for improving seismic
imaging by increasing the extraction of informa-
tion from more data samples than was previous-
ly possible.

Single scattering formulation

Extracting information contained in records
of particle motion can be quite challenging be-
cause the seismic waves being recorded are trav-
eling over large distances, thereby making am-
biguous the position in the medium where prop-
erty changes are inducing modifications in wave
travel. To overcome such ambiguity, we proceed
through a perturbation strategy in which ob-
served seismic traces are compared with synthet-
ic ones computed in a given medium. From re-
siduals between observed and synthetic traces,
we use perturbation iteratively to update the
medium properties by employing full wave mod-
eling to recompute synthetic traces in each up-
dated medium. Designing the initial medium is,
therefore, a critical step of such a local procedure.
The estimation of property perturbation, starting
from a given model with specific properties, is
based on a single scattering formulation in which
we attempt to reconstruct perturbation values at
a single point. The perturbations are added to
those of the current medium. Therefore, when
we want to update the model, we consider the
medium to be a sum of rather independent dif-
fraction points (or pixels) where properties

should be updated without any hierarchical
strategy in the analysis of the types of waves (re-
lated to medium/wave interaction) we are exam-
ining in the data domain. Other strategies may
represent the model with surfaces — such as in
the common-reflection-surface (CRS) method,
which links many points of the medium in a col-
laborative manner (Hubral et al., 1998; Heilmann
et al., 2006; Koglin et al., 2006). Recall that the
forward modeling will link pixels through the
full resolution of the wave equation; multiple
diffractions and reflections are included in the
propagation. During updating, pixel interaction
is more complex to assess and will depend on the
misfit definition and on the related descent di-
rection. It is different from the linking of the for-
ward modeling.

Geophysical diffraction tomography (Devaney,
1984; Wu and Toks0z, 1987; Mora, 1989; Huang
and Schuster, 2014) based on the single scatter-
ing formulation will provide a quantified estima-
tion of wavenumber sampling from seismic data.
This theory includes all scattering angles related
to forward and backward scatterings, which are
not distinguished. Their contribution will be
quite different in the process of model building
because backward scattering (small angles) has a
tendency to locate the possible model-property
variation, whereas the forward scattering (flat
angles) has difficulties doing the same thing
when considering all of the contributions com-
ing from the acquisition. The record contribu-
tion at the receiver coming from a scattering
point illuminated by the incident wave from
the source depends on local orientations of the
incident and scattered waves. Waves hitting the
scattering point are leaving the source with an
angle ¢, and will illuminate the scattering point
with an angle ®,. Scattered waves leave the scat-
tering point with an angle ®, and reach the re-
ceiver with an angle ¢,. The forward slowness
vector p, and the backward slowness vector p,
are constructed with an illumination angle 6 for
obtaining the illumination vector q, which is
linked to the wavenumber vector k through the
expression

4 0 4 6
k=2wq = chos(zln = fcos(z)n, (1)

where the angular frequency is denoted by
o =2nf (frequency is denoted by f), the local
wavelength is represented by A (related to the



Figure 3. Single scattering geometric configuration.
At the point of diffraction, where model properties
have to be reconstructed, the incident wave arrives
with an angle @,, providing a wavenumber vector p,.
Corresponding receiver data or residuals are back-
propagated in the medium and will arrive with an
angle @, at the diffracting point, providing a
wavenumber vector p,. The angle 0 between these
two vectors is the illumination angle, and the
vectorial composition of these vectors provides the
illumination vector q, a key ingredient for parameter
imaging at the diffracting point. Waves leave the
source with an angle ¢, and arrive with an angle ¢, at
the receiver.

local velocity c¢), and the vector n is the unitary
vector colinear to both illumination and wave-
number vectors (Figure 3). One can see that we
may obtain small wavenumber values by de-
creasing the frequency or by having angle 6 close
to m, which is the transmission regime we con-
sidered in the introduction. In other words, even
high-frequency contents in phases (short wave-
lengths) may provide low-wavenumber informa-
tion (small wavenumbers) of the model if we are
able to identify the so-called transmission regime
of these phases. Of course, this analysis and the
related updating are performed in the current
model and will be modified at each iteration.
Considering a source frequency band between
fmin @nd f., that is related to a minimum wave-
length A, and a maximum wavelength A,,, the
sampling of the wavenumber space is shown in
Figure 4 for a homogeneous medium with a flat
interface and is inspired from figures by Wu and
Toks6z (1987) and Mora (1989) when they were
investigating a broad range of frequencies. One
can see that low-vertical-wavenumber values are
difficult to sample and depend strongly on the
minimum frequency of the source as well as on
the offset range. With increases in the offset
range come commensurate improvements in
transmission configuration and, therefore, the
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Figure 4. Continuous sampling of wavenumber
space based on the single scattering formulation,
regardless of the types of waves. The zone of
sampling is the black-dotted zone. As offset range
increases, the wavenumber sampling can conquer
the grey-star zone.

contribution of diving waves, thereby leading to
a better sampling of low vertical wavenumbers.
Under the single scattering formulation, in which
no phase interpretation is performed, we have
difficulty filling some zones of the wavenumber
spectrum when using the data. If necessary
for the wave-propagation modeling (especially
the low-wavenumber components), these zones
should be present in the initial model. We shall
see that going back to phase identification with-
out precise picking will allow a compatible fill-in
of these zones for better full waveform recon-
struction.

Local optimization strategy

Let us assume that the model space is de-
scribed over a diffraction domain D where prop-
erty perturbations Am should be updated at the
scattering point x. Because we have at our dis-
posal a model inside which wave solutions can
be provided between source positions x, span-
ning a domain dQ, or receiver positions x, span-
ning a domain 0dQ, and any scattering position x,
we may consider the imaging operator O to be
designed from current model m and available
data d as

Am(x) = O, [Amd(xs,xr,t), X5, X, X, , dgyn(Xs, X, 1),

3, (x,,%.0) ], 2)

where the model perturbations Am to be defined
are linked to the residuals A™d(x,,x,,f) between
observed traces d,.(X,,Xx,f) and synthetic traces
dy,(x,,x,,t). Synthetic wavefields between
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sources and scatterers dg, (x,,x,t) on one side
and between receivers and scatterers dgj, (X,,X,t)
on the other side are necessary ingredients, as are
the geometric positions of sources, receivers, and
scatterers.

The imaging operator could be designed
through different approaches, such as the direct
inversion approach based on an integral formu-
lation (Bleistein, 1987; Miller et al., 1987; Beylkin
and Burridge, 1990; Weglein et al., 2009) or
through an optimization inversion such as the
least-squares minimization (Tarantola, 1987).
We shall consider the second approach and em-
phasize that a possible bridge could be built with
the direct inversion (Jin et al., 1992). Therefore,
the FWI problem is defined as a nonlinear least-
squares minimization problem of the misfit
function C through the rather standard least-
squares misfit function

rnniln C(m) = %IOTW -[aszs Jag, | Ay, (X, X, 1)

- dobs(xrixsrt) |2 dxrdxsdt/ (3)
where the modulus operation is denoted by the
symbol |-|. Other misfit functions could be de-
vised as long as we can perform the derivation
with respect to model parameters. The duration
of observation, because the origin time is set to
zero, is given by T,. This problem is solved
through local nonlinear optimization algo-
rithms. In the framework of these methods, an
iterative sequence my(x) is built from an initial
guess m, ;(x), such that

m;,, =m; + akAmkl (4)
where the scalar parameter o, € R is computed
through a linesearch or a trust-region globaliza-
tion process (Nocedal and Wright, 2006; Bonnans
et al., 2006). In the particular case of the Newton
method for linear problems, the parameter o is
set to 1 and the model update Am, is deduced
from the Newton equation

H(my )Am; = -VC(my). )

In this expression, the operators H(m,) and
VC(my,) are, respectively, the Hessian matrix and
the gradient vector of the functional C(m) at the
iteration k. These two key components of the

FWI method can be expressed in terms of the
Jacobian operator J(m) = ddy,/om as

VC(m) = jT(m)(dsyn (m) - dobs)'

H(m) = 77 (m)7(m) + 07 (dy,(m) - dyy,), (6)

where the transpose operator is denoted by the su-
perscript T. A common approximation of the
Newton method consists of considering only the
first term of the right side in the expression of
the Hessian operator (equation 6) and is referred
to as the Gauss-Newton (GN) approximation. In
this context, the model update at iteration k is
the solution of the linear system

Hgn (my )Am; = -VC(m, ), with

Hon(m) = 7' (m)J (m). )
This equation can be rewritten in terms of the
Jacobian operator and the model update only
through the equation

J' (m)J(my)Am, = -J' (m)(dyy, (my) — d )
8)

This Gauss-Newton approximation (equation 8)
is important because it reveals that the model
update at iteration k is computed as the least-
squares solution of the simple linear system

j(mk )Amk = _(dsyn(mk) - dobs)/ 9)
which is a locally linearized expression around
the current model m, and provides a local linear
link between data perturbation and model per-
turbation. Let us reiterate the alternative: finding
an approximation of the inverse of the Jacobian
operator, sometimes named the direct inversion
formulation, will provide a different strategy
from that of the least-squares operator -
[7"(m,)J7(m,)]'7"(m,). One can cite the in-
verse Fourier transform or the inverse of the gen-
eralized Radon transform as examples of direct
inversions (Beylkin, 1985).

One can see that as soon as we have discrete
data and model spaces, the single scattering for-
mulation for updating the current model relies
essentially on tools designed from linear algebra.
Acquisition configuration and initial model



design are the two other types of complementary
information that we need for performing the full
waveform inversion as a data-driven strategy of
imaging. In order to obtain a practical evaluation
of the gradient vector and the Hessian matrix of
the misfit function C, we must consider the hy-
perbolic partial differential equation for con-
structing the wave solution inside a known me-
dium. This is the forward problem.

Wave propagation

Wave-propagation modeling is an internal
process of the seismic imaging workflow and
should be designed with a consideration of the
optimization we have selected. Here we will ex-
amine forward modeling by itself. We formulate
it as a time-implicit differential system suitable
for optimization but also as a time-explicit differ-
ential system suitable for computational purpos-
es. The Earth is a heterogeneous medium with
attenuation and anisotropic properties, making
the modeling of wave propagation a challenging
problem. We will not discuss attenuation in this
introductory presentation of FWI because addi-
tional attention is required (see the review by
Yang et al. (2016) for including attenuation in
the full waveform context). A consideration of
anisotropy does not introduce new difficulties
and, therefore, can be undertaken here. Following
continuum mechanics, the motion at a point of
the medium x = (x, y, z) should follow the partial
differential equation (PDE)

9, v; = 0.0, + [
pt It f . (10)

040y = Cyja0s€x + 9,07,

by
where the density is denoted by the symbol p,
the i component of the particle velocity by v,, the
ij component of the second-order stress tensor
by o;, the ijkl component of the fourth-order
stiffness tensor by ¢;;, (sometimes called the elas-
tic tensor), and the second-order strain tensor by
g;. Indices i, j, k, I span the coordinates [x, y, z| (or
[1, 2, 3], as is often used). Recall that the strain is
defined by the expression g; = (d,u; + du;)/2 where
the i component of the particle displacement is
denoted by u;. Recall also that all mentioned ten-
sors are symmetrical; the system is conservative.
The first equation is Newton'’s law for dynamics,
and the second equation is the time derivative of
the linear Hooke’s law characterizing the elastic
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rheology of the material defined as o= ¢;y€y-
The medium is excited by external forces f¢ or by
internal stress ¢ coming from a local failure of
the rheology law (explosion or fracture).
We use Voigt indexing, 11 —» 1,22 — 2,33 — 3,
23 0r32—-4,13 0r31 -5, 12 or 21 — 6, and we
define the nine-component vector wt= (v, V,V, Oy
0, 0, 0, O, Oy)' With v,=w,, v,=w,, v,=w;,
O =01=Wy40,,=0,=W;5,0,,=03=W;, 0, =0, =Wy,
0,,= 05 =W, O, =0;=W,. Substituting strain by
particle velocities (the time derivative of displace-
ment), the elastodynamic system can be written
through scalar notation for each component w; as
oWy (x;,t) = (AD),;w,(x;,t) + 1", (11)
with implicit summation on repeated capital in-
dices from values 1 to 9. The source term f* could
act on the nine different components. The vec-
tor w is evaluated at the position x; in the dis-
crete mesh used for numerical integration. The
extended stiffness matrix A has the following
structure

B 0
A= ( - MJ, (12)
O6><3 C6><6
where the diagonal matrix
b 00
B={0 b O (13)
0 0 b

introduces buoyancy b, which is the inverse of
density p, and where the stiffness matrix

i G G3 G4 Gs G
€z Gz Gy G5 G

Cc=| TG Gy Gy G (14)
Cag Gys Cyg
Css Cse
Co6

is symmetrical. The symmetrical matrix D con-
tains differential operators with respect to space
coordinates:

(15)

_ [O3><3 D3><6J
DéxS 06><6
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with the rectangular submatrix

9, 0.0 0 9, 9,
Dys=[0 3, 0 3, 0 3| (16
0 09, 9 9 0

In matrix form, we have the first-order hyper-
bolic system

ow=B,w+f" (17)

with an impedance matrix B,, which is now not
symmetrical (because matrices A and D do not
commute), as shown by boxes when considering
its complete expression for the particular case of
isotropic media (with Lamé coefficients A and u)

0 0 0 [bo,
0 0 0

0 0 0 0

(A+2w]a, 49, A9, 0
B, =210, (A+2p)9, A9, 0

Ad, A9, (A+2u)9, O

0 ua, ua, 0

uo, 0 Ha, 0

ua, ua, 0 0

0 0 0 by, by,

bo, 0 ba, O  bo,

0 ba, ba, b, O

0 0 O 0O O

0 0O O 0O O

0 0 0 0 0

0 0 O 0O O

0 0 O 0O O

0 0 0 0 0 (18)

The excitation f* is composed from forces and
stresses of the system (equation 10). We shall see
that we need to solve partial differential equations
defined by the transpose matrix B}, which is real.
System 10 governing the wave propagation is not
a self-adjoint differential system. Because the wave
propagation preserves the total energy in nonat-
tenuating media, we design a self-adjoint system,
providing the same solution as in system 10.

If we introduce the compliance tensor S, for
which we shall use Voigt compact notation, we
consider the following PDE

pov; — i = 0,05 (19)

e _
Siik19¢0ij — Sijk19 03 = (v + 9y )/ 2.

All spatial partial derivatives have been purpose-
ly written on the right side and, therefore, are
not intermingled with the properties of the me-
dium. All matrices are now symmetrical and,
therefore, the energy will be preserved during
propagation — an important property of wave
propagation in nonattenuating media. Now we
understand why system 10 also preserves the en-
ergy, whereas it was not obvious initially.
Moreover, this separation will be quite helpful
when we take the derivative of these partial dif-
ferential equations with respect to the medium
parameters, which are expressed only on the left
side of these equations. We introduce an extend-
ed mass/compliance matrix M and we write in a
compact form the symmetrical first-order hyper-
bolic PDE, still using the scalar notation for each
component

My o,w (X, t) = My f* = Dy wi(x;,1),  (20)
where a product of matrices is avoided (Burridge,
1996). As we shall see, this structure is suitable
for elaborating on the imaging condition, but
because it is an implicit system it is not suitable
for computing wavefields. We prefer to solve
the first-order hyperbolic system (equation 11)
by evaluating the time evolution of the wave-
field w from initial values. Let us repeat that the
system of equation 20 will be the one used for-
mally for seismic image updating, regardless of
the system selected for computing wavefields.
These two systems (equations 11 and 20) pro-
vide the same continuum solution. Numerical
solutions may differ only by numerical errors
coming from the discretization we assume in
the numerical algorithm we select; such errors
will be neglected.

Alternatively, we may eliminate the stress
components in the first-order hyperbolic system
(equation 11), leading to a second-order hyper-
bolic system in which the wavefield w is only the
particle velocity v. We drastically reduce the
memory requirements of wave-propagation sim-
ulation because the wavefield now only has three



components. This system is self-adjoint because
we have second-order derivatives in space and in
time. The introduction of the compliance matrix
illustrates this convenient common property
shared by first-order and second-order hyperbol-
ic systems. We obtain the system

POy V; = 0;(Cyg0 Vi) + i+ ajoi?' (21)

This system must be complemented by the esti-
mation of the strain € or equivalently by the
stress o because we will need them when consid-
ering derivatives of the PDE with respect to me-
dium parameters for the imaging condition. This
requirement mitigates partially the memory re-
duction we have identified. We must consider an
extended system

e

POy V; = 9;(Cijy0 Vi) + [+ 0,05,

(22)
9,€; = (9;v; +9,v;)/2.

The first line is self-consistent and provides
the wavefield at each time step. The second line
of system 22 is required for some of the imaging
conditions we shall consider in the next section.
In other words, these additional fields d,e (or
equivalently d,6) are only composed when need-
ed for computing seismic imaging ingredients.
Their numerical estimation should be integrated
into the numerical tool of the forward problem,
whereas that estimation is not included when
only the wavefield is needed. This alternative
formulation is attractive for different applica-
tions because it mitigates the memory require-
ment. Of course, with whatever system we select,
the imaging condition expressed by the gradient
will be the same quantity.

We can move from time integration to fre-
quency sampling, and in so doing a linear system
has to be solved with complex arithmetic opera-
tions. Often we prefer to convert the second-
order hyperbolic system in time into a linear dis-
crete system that will be smaller than the one
deduced from the first-order hyperbolic system.
Computer resource needs are reduced for solving
the linear system either through a direct solver
technique based on sparse matrix-vector manipu-
lation (MUMPS team, 2011) or through an itera-
tive solver technique (Plessix, 2007). The direct
solver technique is quite appealing when consid-
ering many sources, but the memory require-
ment is high. Recently improved approaches
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have broadened the domain of applications be-
cause memory requirements have been reduced
and scalability has been dramatically improved
(Amestoy et al., 20135). Iterative solver techniques
have been found to be efficient strategies for the
acoustic case (Plessix, 2007; Riyanti et al., 2007;
Erlangga and Nabben, 2009; Neklyudov et al.,
2014) but the elastic case is still an open question
(Gosselin-Cliche and Giroux, 2014; Li et al., 2015).

Currently, the optimal strategy is unclear —
whether we should consider frequency formula-
tion or time formulation for the forward prob-
lem. The frequency formulation could include
attenuation without any extra cost, whereas in-
corporating attenuation is more tedious in the
time formulation. On the other hand, selecting
data is easier in the time domain than in the fre-
quency domain. We must wait for numerical in-
vestigations by other groups to identify cases
when one option is superior to the other one; we
expect that the choice will be case-dependent
and could change during the imaging process.
Until now, from a practical point of view, most
implementations of FWI have been performed in
the time domain because multiple frequency
contents could be considered simultaneously,
which is important when dealing with reflection
phases.

Seismic imaging ingredients

This section is technical, and a demonstration
of the results are presented in the Appendix. The
most obvious strategy for minimizing the misfit
function uses the estimation of Fréchet deriva-
tives; that is, it uses the data derivative with re-
spect to the model parameter, also called the sen-
sitivity matrix, which has a dimensional com-
plexity related to the dimension of the data space
multiplied by the dimension of the model space.
The related system of equation 9 is solved in the
least-squares sense, leading to the system of equa-
tion 5, which is solved by different techniques,
such as the conjugate gradient promoted, for ex-
ample, by the least-squares (LSQR) algorithm
(Paige and Saunders, 1982). When looking at the
system of equation 5, one can see that the local
minimization of the misfit function will need
only the estimation of its gradient vector with a
model complexity (i.e., the number of degrees of
freedom of the model), and sometimes an esti-
mate of its Hessian matrix with a model-square
complexity (the square of the number of the de-
grees of freedom), independent of the dimension
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of the data space in equation 5. The estimate of
the sensitivity matrix is not strictly required, even
though it will yield significant information for
fine-tuning the optimization provided we can af-
ford the expense of estimation and storage. We
do not need to evaluate the Fréchet derivatives in
order to update the model; this is the adjoint for-
mulation (see Chavent, 1974; Tromp et al., 2005;
Plessix, 2006b; Chavent, 2009, for reviews),
which is described in more detail in the Appendix.
Here we only describe the final expressions. Let
us write this misfit function again,

com)=5 [ [, [a5 0 x0-du e, 0]

x dx . dxdt, (23)

with the relation between synthetic data and
computed wavefields given by the expression
dgn (X, X, 1) = Rw™ (X, X,1), (24)
where we define the operator R, as the projection
of the wavefield vector w™ onto data components
at receiver positions. In a discrete world, this op-
erator is a rectangular matrix. The vector w™ must
satisfy the system of equation 20, which is ex-
pressed in time. We, therefore, have two equality
constraints, one derived from the projection of
the wavefield onto the recorded data at receivers
and the other one from the wave equation verified
by the wavefield. In mathematical optimization,
the method of Lagrange multipliers is the mathe-
matical tool for performing such a minimization
under constraints. This leads us to introduce two
new vectors. The first, A™, has the same number of
components as the wavefield vector w™, whereas
the second, u™, has the same number of compo-
nents as the data vector dg, and is simply con-
nected to the projector R.. The first vector is called
the adjoint wavefield associated with one source x;
and should verify the partial differential system

MUatl](xS,x, t)
= DRI (X, X 1) =dopy(X, X1 1) |
= DIK(V)A’K(XS/X/t)/ (25)

which turns out to be identical to the implicit
system of the wave propagation (equation 20).
The sum is over receivers related to the selected
source. The source term of this adjoint system

defines this adjoint wavefield and comes from in-
serting the projection R of data residuals back
into the modeling discrete grid. We send back
into the medium unexplained features of the
data in order to locate possible zones of contribu-
tion inside the medium. The conditions on this
adjoint wavefield will be final conditions, because
A (x, T,) = 0. We deduce an explicit system

atﬂ‘l(xs ' Xy t) = (A D)I[ l](Xs ' Xy t)
+ 2 AIKRIT (dsl;ln (Xs 1 X t) - dobs (Xs 1 Xy t))K'

(26)

identical to equation 11, in which only the source
term has been modified, thereby introducing me-
dium properties at receivers. Note that the adjoint
source will simultaneously return all of the residu-
als for one source. This system can be integrated
back in time to the time of origin. Incident and
adjoint wavefields are not obtained simultaneous-
ly. Although we do not consider attenuation in
this presentation, let us note, to avoid confusion,
that this adjoint system is still stable when attenu-
ation is included. The attenuation effect is an am-
plitude decrease during the backward integration
of the adjoint wavefield and does not provide any
amplitude increase (Tarantola, 1988). Having the
incident wavefield be at the same time as the ad-
joint wavefield is required for crosscorrelation, in
order to build up the gradient. Many methods ex-
ist for making the incident wavefield available for
crosscorrelation, such as saving the incident field
during the forward computation with efficient
compression and disk storage through efficient in-
put/output strategies (Sun and Fu, 2013; Prabhat
and Koziol, 2014). Alternatively, during the inte-
gration of the adjoint wavefield backward in time,
one may recompute the incident wavefield either
by using time reversal integration (Clapp, 2008;
Dussaud et al., 2008; Brossier et al., 2014), or by
using optimal checkpoint strategies based on re-
peated time forward integration (Griewank, 1992;
Griewank and Walther, 2000; Symes, 2007;
Anderson et al., 2012). We may deduce the gradi-
ent of the misfit function as

X (x)= ) [[FaeaTx,0 90 x)
x[9,w(x,t) - Mf"V (x,1)]. (27)

The sum is over sources.



In the frequency domain, monochromatic
wavefields are stationary fields distributed inside
the medium; they have amplitude and phase be-
cause they are complex. We consider one source
from which we have a monochromatic concen-
tric wavefield because we are working with a
homogeneous medium. We have the same con-
centric shape of the wavefield from the receiver
corresponding to the adjoint field. Figure 5 is the
product of these two wavefields, which is the in-
terference at a given frequency in a homoge-
neous medium. This interference is the gradient
contribution for one pair (source, receiver), and
it displays where we should update the model in
order to explain what is observed and not ex-
plained at the receiver. This is sometimes called
the sensitivity kernel. In the first Fresnel zone,
primarily sampled by direct waves, waves pro-
vide a potential contribution for updating the
medium with an expected smooth resolution
(Woodward, 1992), whereas outer interference
fringes, mainly sampled by reflected waves, yield
a zone with an expected high resolution. The lo-
cation of this zone strongly depends on the cur-
rent model we are considering. The first Fresnel
zone depends on the acquisition geometry and
more weakly on the model, whereas the outer
fringe is highly dependent on the model and
does not depend on the acquisition. Estimating
model perturbation inside the first Fresnel zone
will fill in the low-wavenumber part of the me-
dium because we are not able to discriminate be-
tween contributions of the different points of
this zone. On the contrary, when we start the
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optimization, the initial model should be accu-
rate enough to locate the outer fringe at nearly
the right place, as we shall discuss in the section
concerning the initial model definition. If we
misposition this outer fringe, we shall construct
a high-wavenumber content at an incorrect
place and it will be very difficult to remove it
through later iterations. This is a complemen-
tary interpretation of the cycle-skipping issue
expressed in the oscillatory time signals.
Counting fringes from the first Fresnel zone
without missing one could be performed with-
out an initial model, a counting nearly impos-
sible to achieve with seismic acquisition. In
seismics and in seismology, we rely on the ini-
tial model design and we avoid such counting.
We put the fringe at nearly the right place with
the help of a good initial model. We say that the
initial model is kinematically compatible.

Away from sources, the gradient of the misfit
function is the zero-lag crosscorrelation between
the adjoint wavefield and the time derivative of
the incident wavefield, which is multiplied by a
local scattering operator. Note that there are no
explicit spatial derivatives in this estimation of
the gradient based on the first-order hyperbolic
system (velocity-stress):

sm =X} a2 0 S oo, 28

where we have omitted the dependence of the
incident and adjoint wavefields with respect to

Distance (km)

A Reflection regime

Figure 5. Misfit function gradient when considering a homogeneous background medium and
monochromatic incident and adjoint fields; the zero-lag crosscorrelation between these two fields highlights
two different contributions. The central ellipse represents the first Fresnel zone, where phase time does not
differ by more than half a period with respect to the direct arrival. The outer fringes represent migration
isochrones whose width decreases with depth according to the scattering angle.



R1-12 Encyclopedia of Exploration Geophysics

the source. Using the density and the compli-
ance components, we can write

o0 =3[} ae[anxorx)]

ac . S o
35, () = Z [ d{ato,(x,.)(askll] A5 (x,-)},
(29)

with implicit summation over capital indices.
The 6 x 6 matrix dS/dSy, for each component S,
is composed with elements of values zero or
one. We have split the nine-component adjoint
wavefield A into the three-component adjoint
wavefield A related to particle velocity and into
the six-component adjoint wavefield A° related
to stress. The physical interpretation of the gra-
dient contribution based on displacement and
stress components should rely on expressions
29, in which the scattering matrix is explicitly
identified. An equivalent formulation could be
written using stiffness components and is wide-
ly used in seismology, where wave-propagation
modeling is performed with a second-order hy-
perbolic system (displacement) (Liu and Tromp,
2006).

The gradient estimation is required for updat-
ing the model, whereas we can avoid estimation
of the inverse of the Hessian matrix when solv-
ing the Newton equation (equation 5). Omitting
this estimation will decrease drastically the prob-
lem complexity. Most algorithms of FWI are es-
sentially based on gradient estimations, such as
the steepest-descent method or the conjugate-
gradient method, although in recent investiga-
tions the impact of the Hessian matrix is increas-
ingly being taken into consideration. An efficient
way of evaluating its influence is through the
quasi-Newton method, for which limited storage
has been promoted by Nocedal and Wright
(2006). This approach only requires a small num-
ber (roughly 10 or 20) of stored gradients and
models for approximate estimations of the im-
pact of the Hessian matrix.

In the future, we may need to go one step
farther and consider the full Newton method,
which will require estimation of the product of
the Hessian matrix with any model vector — a
key ingredient of a conjugate-gradient method
for solving this Newton equation. An efficient
way to estimate that product is through the so-
called second-order adjoint formulation, which

will not be described here. Instead, the reader is
referred to the article by Métivier et al. (2014) in
which a matrix-free approach is presented. This
approach will allow efficient estimation of the
influence of the Hessian matrix, which will be
important for mitigating any acquisition defi-
cit, for improving the convergence rate, and for
reducing the tradeoff between parameters.
Because we never estimate the inverse of the
Hessian matrix, we cannot provide any infor-
mation on resolution and uncertainty of the
seismic image — an analysis that we consider in
the next section.

An extensive description of the impact of the
Hessian matrix will be provided when multiple
parameter imaging is considered.

In the frequency domain, the expression of
the misfit gradient vector is composed of three
terms: the incident and adjoint wavefields and
the scattering matrix. At the point i in the mesh
for the model parameter m,, the gradient is

NS i .
(agf:,l)). =10}, mw»(?ﬁi<x,.>ij*<x,wy,

i j=1

(30)

where w(x, ®) are conjugate residual vectors be-
cause we are now working in a complex space
(Virieux and Operto, 2009) and the circular fre-
quency is expressed by w. The imaginary number
is denoted by 1 =+/-1. Implicit summation is
considered on repeated capital indices.

Finally, let us mention that we also may need
to estimate the source time signal. The deconvo-
lution of the source wavelet is a simple operation
in the frequency domain (Pratt, 1999) and a
slightly more complex one in the time domain.
The main point is the selection of the data time
window for performing the deconvolution. We
may select near-field data, far-field data, or
ocean-bottom reflection data. Once this prelimi-
nary source wavelet is built, we will use anticaus-
al mute and/or band-pass filtering for finalizing
our estimation of the source wavelet. Readers in-
terested in source extraction also can consult the
article by Plessix and Cao (2011), who discuss us-
ing an adjoint formulation. That could be done
for each source and at each iteration, if needed.
We may assume that it should be done once at
the beginning and could be the same for all
sources. These different strategies are applica-
tion-dependent.



Resolution analysis and formal
uncertainty estimation

Although the relation between seismic data
and medium properties is essentially nonlinear,
we can expand the misfit function around the
expected global-minimum model m. The misfit
function has a Taylor expansion

C(m) = C(1h) + VC(rh) (m — )

N %(m _m)yH@@)m-rm)  (31)

reducing to a quadratic expansion form
C(m) ~ C(xh) + 1 (m — ) H(h)(m - ) (32)

at the minimum we have reached by zeroing the
gradient vector VC(m). There is no guarantee
that it will be a minimum and more specifically
the global minimum we are seeking. At the
current local minimum, the Hessian matrix
should have real positive eigenvalues with some
of them near or equal to zero. We always try to
mitigate the influences of these small eigenval-
ues during the optimization procedure. We shall
assume Gaussian statistics, a basic hypothesis in
the framework of the Bayesian formulation
(Tarantola, 1987). From the Taylor expansion
(equation 32), the probability density

pd(m) o o~ H(m =) H(h)(m-1h) (33)
expresses the statistical distribution of possible
models. Let us repeat that the gradient vector is
zero at the minimum and, therefore, is not in
the probability density function when ex-
pressed at the minimum. We assume that seis-
mic traces are not correlated and are of the
same quality. Moreover, let us assume that the
statistics on the data are Gaussian and the units
are normalized, giving us a data variance of one
for each data value. Assuming that we have
reached the global minimum, the Hessian ma-
trix is the inverse of the posterior covariance
matrix evaluated at the minimum m and,
therefore, it will include the information for
formal resolution and uncertainties as well as
tradeoffs (Fichtner and Trampert, 2011). Using
a singular value decomposition (SVD) of the
Hessian matrix, we may deduce that the

An introduction to full waveform inversion R1-13

probability density will be the product of the
probability densities for each model parameter:
a rather simple Bayesian structure that is of lim-
ited validity in practical applications for a reli-
able uncertainty estimation.

Probing the structure of the inverse of the
Hessian matrix will provide a resolution analysis
as well as an uncertainty estimation, but that is
not an easy task because the Hessian matrix has
a complexity that increases as the square of the
model complexity. The recursive expression of
the inverse of the Hessian for the limited-mem-
ory Broyden-Fletcher-Godlfarb-Shanno (BFGS)
algorithm will allow a discrete estimation of res-
olution and uncertainty under the quadratic
approximation. Of course, we have to store or
compress the Hessian matrix, which has mainly
a block-band-diagonal structure, because neigh-
boring points should interact whereas far-apart
points are less expected to interact. Another ap-
proach will be through the second-order adjoint
formulation with matrix-free operations. At the
minimum, we perturb the gradient at the posi-
tion in which we are interested, and we solve the
restricted Newton equation with the gradient
restriction at the selected position. The resulting
model vector will provide the resolution and un-
certainty around the selected position.

Another numerical alternative comes from
the low-rank approximation of the Hessian
matrix, which is supposed to have a pseudo-
differential structure inducing a sparse shape of
this matrix. Therefore, through randomized sam-
pling, one can probe the most dominant eigen-
value components of the Hessian matrix itself
(Candes and Demanet, 2005; Demanet et al.,
2012), leading to fair approximations of the
Hessian matrix (Herrmann, 2010; Fang et al.,
2014). We are still operating under the quadratic
assumption.

Because the true misfit function differs from a
quadratic shape, we can introduce the resolution
matrix

m(x) = R(x,x )m(x’). (34)
Ideally, the desired resolution matrix R should
be the identity. We expect not to be too far away
from a diagonal structure and, therefore, we
expect interaction only between neighboring ele-
ments. This will lead to alow-rank approximation,
in which the complexity of the matrix R will be
kO(n), where the integer k defines the halo
around the current parameter when the model
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is characterized by n degrees of freedom. Numerical
probing comes with a finite small perturbation
om of one parameter j away from the minimum
m. Synthetic data at the new model will differ
from synthetic data at the minimum and, there-
fore, could be used for a model reconstruction
that provides an estimated perturbation dm; of
parameters with the same expected resolution
matrix defined at the minimum. We build numer-
ically one line of the resolution matrix

_6m;
Tosm!

(35)

and we may proceed with another perturbation j
over positions and parameter classes, provided
we can store the matrix. We have the capacity of
computing the spread function SPREAD(R)=
IR = I|I? over the medium. The SPREAD function
is a compact quantity for quality control of
probed zones of the medium. Moreover, we
can estimate the probability density as well as
tradeoffs between parameters. We may quantify
somehow the trustworthiness of the formal un-
certainty and resolution by finding the Gaussian
distribution of ém for the specified initial per-
turbation ém’/. Of course, we may sample this
resolution matrix coarsely, especially on regions
of interest.

The difficulties encountered with sampling
the Hessian matrix accurately, and the question
of how accurate the quadratic approximation is
when considering high-dimensional spaces, lead
to cautiousness in promoting these formal quan-
tities. The FWI is a rather deterministic approach
providing the “best” model at a given level with-
out providing insight on quantified resolution
and uncertainty. In the future, a more sophisti-
cated sampling strategy based on ensemble
methods (Evensen, 2009) could provide more-
quantitative assessments of resolution and un-
certainty. Such a strategy would require signifi-
cant computer resources.

An example of a real application

Real applications of FWI have been success-
fully achieved on various seismic data sets.
Currently, FWI is implemented mostly in the
time domain because a wide range of applica-
tions with various survey sizes and different ac-
quisition geometries can be investigated, in
both exploration seismics and seismology (e.g.,
Komatitsch et al., 2002; Vigh and Starr, 2008;

Mulder and Plessix, 2008; Krebs et al., 2009;
Plessix and Perkins, 2010; Sirgue et al., 2010;
Routh et al., 2011; Peter et al., 2011; Plessix
etal., 2012; Bansal et al., 2013; Vigh et al., 2013;
Fichtner et al., 2013; Schiemenz and Igel, 2013;
Warner et al., 2013a; Zhu et al., 2015). Such ap-
plications are generally quite demanding on
computational resources. We would like to fo-
cus on a specific environment where the FWI
has been demonstrated to perform quite well
both in the frequency domain (Operto et al.,
2015) and in the time domain (Warner et al.,
2013a).

A marine environment for characterizing
reservoirs below sedimentary layers wusing
permanent ocean bottom cables (OBC) or nodes
providesagood configuration for FWlapplications.
There is a high density of sources and the recording
at the sea bottom provides four-component data.
We shall illustrate FWI high-resolution imaging
on a real OBC data set from the North Sea (Operto
et al.,, 2015). This acquisition is a fixed-spread
with wide-azimuth configuration. For this
illustration, the forward modeling is a 3D
viscoacoustic vertical-axis transverse isotropy
(VTI) finite-difference simulation in the frequency
domain (Operto et al., 2014). Only the vertical
velocity is reconstructed. Four-component OBC
acquisition comprises ~2300 receivers and
~50,000 shots in the Valhall oil field (Barkved and
Heavey, 2003). Only the hydrophone component
is taken into account here, because we consider
just the acoustic approximation. The acquisition
layout covers an area of 145km? and the
maximum depth of the subsurface model is
4.5 km. Data are inverted in the 3.5- to 10-Hz
frequency band.

Warner et al. (2013a) processed successtully
a similar data set in the same kind of environ-
ment using a time approach. In addition to other
substantiating evidence, high-quality images
have also been obtained and give us further con-
fidence in the usefulness of FWI. Readers inter-
ested in an extensive discussion of the FWI ap-
plication in the Valhall oil field should consult
the paper by Operto et al. (2015). Here we pro-
vide a brief discussion of the image improve-
ments achieved by fitting the whole content of
seismograms.

We need to start from an initial model. A ver-
tical-velocity model and Thomsen’s parameter
models were built by reflection traveltime to-
mography and were provided to us (courtesy of



BP). A density model is built from the initial ver-
tical-velocity model by using Gardner’s law, and
it is kept fixed over at least ten iterations.
Thomsen’s parameters are also kept fixed. A ho-
mogeneous model of the quality factor is used
below the sea bottom, with a value of Q = 200.
Starting from this initial model, we sequentially
invert the vertical velocity for 11 frequencies, be-
ginning with 3.5 Hz and ending with 10 Hz. We
have adapted the finite-difference grid to each
frequency. Note that the final grid size of 35 m
accurately matches the sea bottom at a depth of
70 m. We compare horizontal slices at three dif-
ferent depths: 175 m (Figure 6a and 6d), S00 m
(Figure 6b and 6e), and 1000 m (Figure 6¢ and
6f) in the initial tomographic velocity model
and in the final FWI model.
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In Figure 6d, one can see an improved recon-
struction of paleochannels stored in the superficial
sedimentary layer, as well as the imprints of gla-
ciers sliding over the bedrock in Figure 6e. Both of
these features are difficult to see in the tomograph-
ic images. The gas cloud is identified in the tomo-
graphic image (Figure 6¢), but the reconstruction
in Figure 6f by the FWI gives an unprecedented
sharpness of contours, because of the broadband
resolution we achieved. We conclude that the
resolution has been significantly improved by
FWI compared with that from traveltime tomog-
raphy.

Comparing seismograms of real and synthetic
data also illustrates the capacity of FWI to extract
more information (Figure 7). Synthetic seismo-
grams in time, computed by a time forward
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Figure 6. Initial model in the left panels and final model in the right panels. Horizontal sections are shown
at depths of 175 m, 500 m, and 1000 m. Note the significant increase of resolution from left to right. The
paleoriver features are nicely visible in (d) but cannot be seen in (a), at a depth of 175 m. In (d), one can
identify also the strong imprint of the acquisition. At a depth of 500 m, imprints on bedrock of former
glaciers are focused in (e) but are not visible in (b). Finally, at a depth of 1000 m, very precise contours of
the gas cloud are clear in (f) but are completely blurred in (c). Acquisition imprints decrease with depth but

are still present.
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Figure 7. A common receiver gather in (a) the initial model and (b) the final model. Each panel has recorded
traces and mirror-modeled traces. Red arrows identify first-arrival phases, and black arrows identify post-
critical phases. Note the increasing extraction of information achieved by the FWI because of the better
match between synthetic and real traces. The source signal is shown as an insert and differs between the

initial and final models.

modeling, show improved agreement with real
seismograms, highlighting the efficient extrac-
tion of information that FWI has achieved. Let
us point out the slightly different amplitudes for
reflection phases in this figure, which might sug-
gest that density or impedance should be intro-
duced and should direct us toward multiparam-
eter inversion.

The high-resolution reconstruction with FWI
is linked to its significant sensitivity to the initial
model, which should be carefully designed. We
discuss the cycle-skipping issue in the next sec-
tion and explain that we cannot escape the fun-
damental ambiguity related to local minima
when considering local minimization strategies.
We must introduce some prior information that
could be pertinent for the seismic data we con-
sider, but we cannot guarantee that it will work
as desired for any specific data sets.

Cycle skipping and initial model design

Cycle skipping in FWI originates from the os-
cillatory nature of seismic data. Counting wrig-
gles from the source is impossible, taking into
account the seismic data acquisition protocol.
We may rely on velocity structures for predict-
ing, with a time accuracy below half of the signal
period, where the synthetic wriggle should be
relative to the data wriggle in the time recording.
If the initial velocity is not accurate enough,
we face a cycle-skipping ambiguity and we may
be trapped into a local minimum during the

optimization procedure by attempting to fit the
wrong wriggle. This is especially true when the
misfit function is the ¢/, norm and we are com-
paring a data sample and a synthetic sample of a
given record.

Therefore, we should rely on robust meth-
ods such as traveltime tomography for con-
structing initial models. Because traveltimes
and phases for dispersive waves are robust ob-
servables, we should rely on them as long as we
are able to extract them from seismograms be-
cause they are separable. Phase picking, the
most challenging step of initial velocity recon-
struction, can be performed in the data domain
or in the image domain (Lambaré, 2008). The
resulting pickings are interpreted during the re-
lated inversion procedure, which is far less dif-
ficult and intensive than the one for FWIL.
Strong and expert human inputs are required
for driving the volumetric picking (threshold,
cleaning, and peeling off the observables) and
for specifying the identification and the inter-
pretation of the analyzed phase. Even if the
inversion is less non-linear, we need various
penalty strategies in this tomographic inver-
sion step of the velocity model construction.
Note the significant humantime consumption
in this workflow.

Two other strategies, based on more autono-
mous workflows, have emerged for overcoming
theissue of cycle skipping. They are based primarily
on misfit-function designs and/or model-space
definitions.



The data domain strategy is mainly driven by
the design of more robust objective functions
that operate essentially by mitigating the oscilla-
tions of the seismic signal. Phase-only approach-
es have been investigated by Bednar et al. (2007),
whereas analysis of the envelope has been sug-
gested by Bozdag et al. (2011), and analysis of
the instantaneous phase has been proposed by
Maggi et al. (2009) and Lee and Chen (2013).
Unwrapping or dynamic warping (Choi and
Alkhalifah, 2011; Alkhalifah and Choi, 2012; Ma
and Hale, 2013; Perrone et al., 2015) is another
way of comparing signals. Crosscorrelation (Luo
and Schuster, 1991; Tromp et al.,, 2005; van
Leeuwen and Mulder, 2010) is natural, and zero-
lag crosscorrelations (Routh et al., 2011) are also
time series operations that mitigate amplitude-
variations. Finally, deconvolution also reduces
oscillations and is promoted by Luo and Sava
(2011) and Warner and Guasch (2014), whereas
integration, as another oscillation reduction
tool, has been proposed by Donno et al. (2013).
Finally, let us mention optimal transport as a
new way of comparing seismic signals or gathers
(Engquist and Froese, 2014; Métivier et al., 2016a,
b). These different techniques modify the misfit
function and require further investigation, espe-
cially when considering complex media; some
limitations are expected and determining where
these techniques perform efficiently will require
further work.

The other strategy for the misfit-function
design is an unphysical extension of the model
domain in order to mitigate any errors or biases
resulting from the model description. Introducing
subsurface offsets and time-shifts is a method for
relaxing imaging conditions because the model
is not yet built correctly and prevents focusing of
the incident and adjoint fields at the point of
interest (Symes, 2008; Rickett and Sava, 2002;
Sava and Vasconcelos, 2009; Biondi and
Almomin, 2012; Almomin and Biondi, 2012;
Biondi and Almomin, 2013, 2014). Alternatively,
constrained optimization based on a penalty
strategy will extend the model domain by inte-
grating wavefields as components of the model
space. Consequently, the wave equation is not
required to be verified exactly by wavefields at
each iteration. We update iteratively both the
wavefields (for verifying the wave equation) and
model parameters (for fitting the data) (van
Leeuwen and Herrmann, 2013).
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Whatever the misfit-function strategies are,
they will introduce prior knowledge regarding
how to interpret different phases and, therefore,
a specific investigation should be performed to
better understand that prior information. Often,
these guided strategies will not identify clearly
what are the assumptions enabling phase separa-
bility, phase identification, and phase interpreta-
tion.

In this article on FWI, we do not want to delve
into strategies that would involve new concepts.
But, one strategy complements the description
of FWI we have presented. We will describe it
and detail its relation to previous strategies
(Chavent and Jacewitz, 1995; Plessix et al., 1999;
Clément et al., 2001), sometimes in a broader
context such as that of differential waveforms
(Symes and Kern, 1994; Chauris and Plessix,
2012). We are convinced that this strategy, by
mitigating inherent difficulties of FWI, will im-
prove the reader’s understanding of how FWI
really works.

The primary contribution to the FWI gradient
vector should come from the first Fresnel zone
contribution (the so-called forward scattering) —
essentially, from direct/diving waves. We should
avoid the contribution from backward scatter-
ing, which requires a quite accurate velocity me-
dium. During the hierarchical analysis of the
seismic data, we have shown that other phases,
such as reflections, provide forward-scattering
information that is similar to information from
direct phases. We should be able to distinguish
this forward scattering from the backward scat-
tering contribution of these reflected phases.
Separation of these contributions also has been
promoted by Snieder et al. (1989), Staal and
Verschuur (2013), and Berkhout (2014), by using
specific forward modeling. A new model descrip-
tion should be introduced by considering sharp
contrasts of model parameters inside the volume
to be imaged: we return to prior scale informa-
tion assumed in basic methods of seismic imag-
ing. We lose the unique concept of the single
scattering formulation (the central hypothesis of
FWI) for the interpretation of all phases, what-
ever they are. In this new formulation, we are
back to smooth probing of the medium by waves,
as assumed by traveltime tomography. The fun-
damental difference here is that picking is not
required and the phase analysis is progressively
updated.
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To illustrate this strategy, we consider only
acoustic propagation and leave the extension to
the elastic case for future work. Readers interest-
ed in details can find them in Zhou et al. (2015).
The sharp-constrast description ém performed
through the P-wave impedance parameter, de-
noted by IH,, will absorb backward scattering,
whereas the pixel velocity description m, denot-
ed by VL, will take into account only the infor-
mation brought by the forward scattering. Note
that the impedance parameter is still pixelized
along a line. In other words, this new model de-
scription is linked to a separation between for-
ward and backward scatterings — a dramatically
different strategy compared with the one driving
the standard FWI. Splitting the forward and
backward scatterings in a reflection phase comes
with a new description of the medium, in which
we consider the forward scattering as a reflection
on its travel down to the interface and back up to
the receiver. This is true also for diffractions and
more-complex phases. This contribution is add-
ed to the one resulting from direct/diving waves.
The gradient related to this smooth updating of
the model VL, is shown in Figure 8. It will con-
tain essentially first Fresnel zones and, therefore,
a low-wavenumber description of the velocity
corresponding to smooth information. High-
wavenumber content has mostly disappeared
and is mitigated by selecting the impedance as
the complementary parameter for absorbing this
high-wavenumber content. This approach is the
so-called joint full waveform inversion (JFWI)
(Zhou et al., 2015).

We shall proceed in two steps, following alter-
native strategies promoted recently by Berkhout
(2014). We begin with the buildup of the imped-
ance IH,, starting from a rather simple initial
model VLY using the misfit function

C(IHp) = % W (dgn - diet, (VLY TH, ) i (36)

in which we have selected just near-zero-offset
data d%! that provide only migration iso-
chrones to be compared with synthetic data
d;igd. Typically, the range of offsets from the
source will be several hundred meters. We con-
duct the inversion through a small number of
iterations because we are essentially interested
in the impedance contrast. Once the impedance

has been evaluated, we proceed in minimization
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Figure 8. Gradient of the joint FWI, which is mainly
composed of the first Fresnel zone between a source
and a receiver and the two tilted, partially cut first
Fresnel zones between a virtual source and a real
receiver and a real source and a virtual receiver. The
virtual positions are images of real positions with
respect to the model interface, which is supposed to
be known. A weak high-wavenumber content can be
identified near the horizontal interface (white
horizontal line) and will be mitigated by summing
over sources and receivers during construction of the
total gradient.

of the velocity VL, by using the new misfit
function

Crwi(VLp) = %de (dgti): - dSiZd (VLp))Hi
2
2/

(37)

+ %HWI (dé%fsl - d;igd (VLp, IHP))

in which we have made a rather rough separa-
tion between diving waves and reflected waves.
The previously recovered impedance IH, is kept
fixed during this inversion step. Now we consid-
er a broad range of offsets for the VL, reconstruc-
tion and keep the impedance description fixed.
This reconstruction provides a new smooth VL,
model. Therefore, we can update the impedance
in this new VL, model, and so on.

Figure 9 shows the true model, composed of
a velocity structure V,, and an impedance struc-
ture I, that we want to reconstruct, as well as
the rather simple 1D medium we use for start-
ing the inversion cycle in order to obtain the
high-wavenumber impedance IH, and the low-
wavenumber velocity VL,. After this cycle is
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Figure 9. On the left, a synthetic Valhall example with a sedimentary layer, a stratified gas cloud above the
reservoir, and a flat interface below the reservoir: (a) true impedance I, and (c) true velocity V,.On the right,
the 1D simple initial model: (b) initial impedance and (d) initial velocity.
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Figure 10. (a) The impedance IH, after the cycling procedure; (b) the true impedance for comparison; (c) the
velocity VL, which has a mostly smooth content; and (d) the true V, for comparison.



R1-20 Encyclopedia of Exploration Geophysics

Distance (km)

a)
3
=<
=
o
[0
Qa
4 A NS T i e
[ [ I I [ [ I |
5 | | | [ | R —

Vp by FWI with JFWI as input

Distance (km)

) 0 1 2 3 4 5 6 7 8
R e e = e s ey RECY!
[ — i [ T [
1____|___|___|__|___|___|___1__|___2-8
I i I i | i i i
| | || — 1 I I 26
T ot = T L L] 24
3 | [ el — e | I
= r 2.2
a 3 e —
2 = 2.0
I | I I | | I |
4+ ----q--71--r----q--1--r-4 18
[ | I I [ I I I 1.6
5 | | | | | | | | .
i |
(km/s)

True Vp

Figure 11. (a) The FWI velocity V,, and (b) the true velocity model. Observe the increase in the high-
wavenumber content, but be aware that we have assumed very simple variations of density, as is often done

for standard FWI.

repeated approximately 20 times, as shown in
Figure 10, the result is a reconstruction of the
impedance IH, that has a strong high-wave-
number content. The reconstruction of the ve-
locity VL, has a low-wavenumber content that
benefits from diving and reflected phases. This
smooth velocity structure could be used as the
initial velocity model in the standard full wave-
form inversion for an improved velocity recon-
struction, assuming a simple density model as
shown in Figure 11.

This workflow relies on a simple modification
of the misfit function and assumes a rough phase
separation between mostly horizontal propaga-
tion of diving waves and mostly vertical propa-
gation of reflected waves. In the JFWI workflow,
we have purposely mitigated any high-
wavenumber content in the velocity reconstruc-
tion, because we chose the impedance parame-
ter, which can absorb the high-wavenumber
component of the reconstruction. By doing so,
we have avoided the strong requirement of an
accurate initial model when we are considering
reflections in their reflection regime. Updating
the impedance by considering near-zero offsets
affects the high-wavenumber content again and
puts it at the right place in the new smooth ve-
locity model. For the computational aspect of
such an approach, the cost is simply for the JFWI
part of the whole cycle to be twice the standard
FWI cost. The impedance portion should be con-
sidered as well and turns out to be fast because
few iterations are required for constructing the
new impedance model through a kind of least-
squares migration.

Regularization and prior constraints

Sometimes we have a good understanding of
what we expect as reconstructed models, either
because we have other information such as sonic
logs, stratigraphic data, or geologic constraints or
because we have other remote-sensing approach-
es such as gravimetry or electromagnetic pros-
pecting. Taking these other approaches into ac-
count in the inversion process will ensure robust
and consistent results (Tikhonov and Arsenin,
1977). We may consider integrating into the mis-
fit function such prior information either by pre-
conditioning the data gradient that reduces the
model description (Fomel and Claerbout, 2003;
Guitton et al., 2012) or by adding a model term
in the misfit function (Asnaashari et al., 2013).
Both approaches are pertinent and complement
nicely the purely data-driven strategy often ap-
plied for the FWI.

We shall now describe the model-driven as-
pect of the FWI. (Asnaashari et al., 2013), because
recent investigations of the FWI workflow have
focused more on the data-driven aspect and have
neglected the model strategy. The new misfit
function will be defined by the expression

C(m) = Gy(m) + 4,C; (m)+2,C, (m), (38)

where the Tikhonov term is denoted by C; (m)
for inversion robustness and the prior model
misfit term is denoted by C, (m). The previous
data misfit function is C4. Two regularization
hyperparameters A, and A, are introduced, to
allow weighting of the penalty terms with



respect to each other and to the data term. They
have to be estimated either theoretically or nu-
merically. Let us express these three terms in a
more explicit way for the particular case of 7,
norms. The data term is the one we have con-
sidered previously. The second term of the mis-
fit function is the Tikhonov term and can be
written as

G, (m)=|B,m|?* +|B,m]|?
= %{mTBi B,m+m'B! B,m)

- (m™Dm}, (39)

where B, and B, are the first-order spatial deriva-
tive operator matrices with respect to x and z,
respectively. In practice, they can be reduced to
the second-order Laplacian operator D. We use a
classical five-point finite-difference stencil to im-
plement the operator D, which provides a con-
nection between neighboring points. The third
term of the misfit function is related to the prior
model m,;,,, which can be designed from differ-
ent information and could be set prior to the
seismic inversion, but which also could be adapt-
ed iteratively during the inversion procedure.
This so-called prior model norm term is comput-
ed using the expression

clm (m) = ”Wm(m - mprior )”2
= %{(m - mprior )T WIIle(m - mprior )}l
(40)

where the matrix W, is a weighting operator on
the model space. This weighting operator has a
dimensional complexity that is the square of the
model complexity, as does the one for the Hessian
matrix. This matrix also can be seen to be the in-
verse of the square root of the covariance matrix
of the model and contains prior uncertainty in-
formation on the model parameters. Only diago-
nal structures of the W, matrix, diag(W,W, )=
1/0%(m), are considered here, although off-diago-
nal terms should play an important role. The
prior weighting model o?(m) contains both the
prior model uncertainty (the variance) and an
acquisition-correction function, which is to be
designed.

Note that the model term of the misfit func-
tion is dimensionless, because of the introduction
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of the matrix W,,. Hyperparameters A, and A, ab-
sorb data and Tikhonov dimension issues. The to-
tal gradient has a data component, coming from
the data misfit C; and evaluated by the adjoint
method, and a model component, coming from
the model misfit ; +C, , which yields

Ymodel = Z’le + ;LZWrTr;Wm(m - mp)/ (41)
an expression that is numerically straightforward
to evaluate. When we are considering a model
term of the misfit function, three difficulties
arise: the definition of the prior model, the con-
struction of the weighting function, and the
computation of its inverse, which is the covari-
ance. Because we consider only a diagonal ma-
trix in this introduction, the inverse will be effi-
ciently computed. To a lesser extent, estimation
of hyperparameters adds an additional complex-
ity, although numerical experiences provide rea-
sonable values quite rapidly for most common
configurations.

Let us consider a synthetic example with two
gas-sand traps in a model for which the acquisi-
tion is deployed at the free surface as well as in
wells (Figure 12). As shown in the figure, the ini-
tial model is a smooth version of the true model
such that first-arrival waveforms are well fitted.
We have assumed perfect knowledge of the
source wavelet in order to emphasize the prior
model component in this illustration. For real
applications, many effects will contribute and
will require skillful strategies. The prior model is
a simple linear interpolation between the two
sonic logs recorded in wells (Figure 12). The data
in such a model will deviate significantly from
the data to be fitted.

Designing the model weighting matrix is of
crucial importance. We assume it to be diagonal
in this article, for simplicity, although off-diago-
nal information is expected to be quite impor-
tant. The variance along this diagonal will be the
product of two components (Figure 13). One will
come from the expected knowledge of velocity
in nearby wells. This prior variance will increase
as we move away from the wells. Moreover, we
have to handle the acquisition configuration in
our expected prior variance. This prior variance
should be larger at depth than at the free surface,
where the sources and some of the receivers are
located. Let us repeat that the total variance is
simply the product of these two designed prior
variances, and the results are much more
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Figure 12. (a) The true model inspired by a
Marmousi configuration, with shots at the free
surface and receivers in two wells as well as at the
free surface, (b) the smooth initial model, which
allows us to have a rather good description of first-
arrival waveforms, and (c) the prior model, which is
a linear interpolation between sonic logs in the two
wells. Data in this model are very different from real
synthetic data.

sensitive to the shape of this total variance than
to its absolute values.

The hyperparameters A, and A, are adjusted
empirically through a few trials. Moreover, we
design an automatic decrease of the hyperpa-
rameter A, through iterations based on the de-
creasing rate of the misfit function, in such a
way that the final image is only related to the
data misfit. We have used this dynamic tuning
to steadily modify the misfit function during
the inversion process. The initial data as well as
the final data are shown in Figure 14. The final
data are almost identical to the true data, which
are not shown because it is not possible to see
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Figure 13. A prior weighting diagonal matrix as the
product of the diagonal matrices shown in panels (a)
and (b): the matrix in (a) is related to well
information, with a small expected variance around
wells, whereas the one in (b) is designed to take into
account the acquisition geometry, with an increase
of the variance with depth.

the differences in the data from this synthetic
test.

Reconstructed models are displayed in Figure
15, where we can see the influence of the prior
information helping the optimization to con-
verge to the correct minimum by modifying the
search path. It does not mean that the optimiza-
tion has allowed an increase of the total misfit
function; it has simply taken another path for
converging to another local minimum. It may
have induced locally an implicit jump in the
data component of the misfit function.

Speeding up FWI

The full waveform inversion is a rather inten-
sive task, and its application has been popular-
ized primarily in the context of acoustic propa-
gation. Even for that case, we may need to reduce
the cost of the modeling or increase the conver-
gence of the optimization at the expense of the
model reconstruction.
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Figure 14. (a) The initial data and (b) the final model data. For this synthetic example, the model data are
nearly identical to the true data, which are not shown here.

When FWI is performed in the frequency
domain, sparse frequency sampling is possible,
and criteria have been designed by Sirgue and
Pratt (2004) for such selective sampling. Warner
et al. (2013b) discuss in detail how to subsam-
ple sources when performing FWI in time and,
benefiting from this investigation, Operto et al.
(2015) discuss the pros and cons of the frequen-
cy and time approaches. Herrmann (2010) pro-
motes randomized sampling to increase effi-
ciency. These strategies organize in different
ways the feeding of the optimization kernel by
selected seismic data. They may reduce com-
puter resource needs, with the goal of obtain-
ing the same quality universally in the image
reconstruction.

For a 3D target-oriented investigation under
the acoustic approximation, a frequency ap-
proach with a direct solver is quite appealing and
competes well with time approaches. Because
the wave equation is a linear equation, we can
simulate waves for more than one source at the
same time, as has been proposed for migration
(Romero et al., 2000). For simplicity, let us con-
sider the frequency formulation of FWI for the
acoustic pressure p, as described by Ben Hadj Ali
et al. (2011), whereas Krebs et al. (2009) consider

time approaches. The computational burden in
FWI can be mitigated by summing encoded
sources into supershots s = Zfil a;s;, where g; is a
complex number. The encoded signature 1s de-
fined by the phase a; = exp(1¢;) of modulus one.
The adjoint source can be deduced with a similar
summation. Because the conjugate of the coeffi-
cient g; for each term of the adjoint source is con-
sidered, thanks to the linearity of the partial dif-
ferential equations, the sum will be constructive
for the source and its related adjoint source. The
sum will be destructive for any unrelated source
and adjoint source and will be considered as
crosstalk. At position i in the mesh, the gradient
of the parameter m, can be expressed as

Am)) &
( om, )i_]z::

N,

)
al] lkpl] am I;
—1

ij aml i 4 ik ?

N,
TaMr*+z
j=1 k1

(42)

where the adjoint wavefield r is composed of
complex-conjugate quantities.

The first term in the right side of equation 42
corresponds to the standard gradient formed by
stacking the contribution of each individual shot,
whereas the second term corresponds to crosstalk
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Figure 15. On the left, results without prior information, using only a data misfit term. As shown in panel
(a), the left part of the medium image is locked into a secondary minimum. The gas-sand trap on the right
side is recovered, whereas the smaller one on the left side is not resolved. Panel (b) shows sonic logs on two
vertical dotted profiles of panel (a) and illustrates the difficulty of reconstruction, especially at depth. On the
right, results are shown when dynamically prior information was used. As is shown in panel (c), the medium
image is well reconstructed with the two gas-sand traps. (d) Sonic logs on two vertical profiles show the

reconstruction improvement quantitatively.

interferences between sources j and k. This extra
term, referred to as crosstalk noise in the follow-
ing, alters the imaging result and, therefore, can
be considered as noise. Therefore, the goal of the
code phases ¢; is to minimize the crosstalk noise.
Random codes seem to be quite efficient in re-
ducing the noise over iterations (Schuster et al.,
2011; van Leeuwen et al., 2011; Godwin and
Sava, 2013). Of course, efficiency is difficult to
analyze without considering the optimization
engine. Castellanos et al. (2015) perform an in-
vestigation and conclude that a similar load for
computer resources will be needed regardless of
the technique used for the optimization. A slight
advantage is assigned to the truncated Newton
method, which seems to provide the final

solution with the smallest variance. As noticed
by Castellanos et al. (2015), convergence is im-
proved because small local minima do not pre-
vent the updating from proceeding (Martin et al.,
2012). Coarsening the seismic data in a more or
less random way also will mitigate the local-min-
ima influence. For nonlinear problems, there is
no formal proof of convergence of such random
strategy. Finally, some authors suggest combining
stochastic approaches when far from the mini-
mum and moving to a deterministic approach
when nearby (Friedlander and Schmidt, 2012;
van Leeuwen and Herrmann, 2012).

Many strategies have been elaborated over
the last 10 years to mitigate the computational
burden of FWI. We shall see in the near future



different proposals for making FWI more af-
fordable, especially for the elastic case.

Multiparameter FWI

Because seismic acquisition in the future will
include increasing numbers of offsets, partition
of energy between P-waves and S-waves should
be considered in seismic imaging. Therefore,
elastic wave propagation should be examined,
although it is a challenging problem that dra-
matically increases computer demand. Moreover,
we shall face the problem of inverting more
than one parameter. Even in the case of acoustic
propagation, we also need to consider other pa-
rameters such as density, attenuation, and an-
isotropy (Tarantola, 1986; Crase et al., 1990,
1992; Plessix, 2006a; Epanomeritakis et al.,
2008; Plessix and Cao, 2011; Prieux et al., 2013a;
Gholami et al., 2013; Plessix et al., 2014, among
others). For elastic cases, numerical illustrations
are still quite simple and real applications re-
main rare (Prieux et al., 2013b; Schifer et al.,
2013; Vigh et al.,, 2014; Stopin et al., 2014;
Borisov et al., 2015).

Operto et al. (2013) discuss the challenges of
multiple parameters. It is crucially important to
identify strategies that allow us to extract infor-
mation on multiple parameters that have differ-
ent imprints in the recorded data. Alternative in-
versions are an often-used technique that may
provide adequate convergence when we are able
to identify a related hierarchy in the data with re-
spect to the different parameters. If not, we need
to invert these different parameters simultane-
ously and, therefore, proper balancing among the
parameters should be performed even at the ini-
tial stage of the inversion. Any incorrect projec-
tion onto a parameter related to a tradeoff be-
tween parameters will introduce features that will
be very difficult to remove at later iterations in
the update model. Another pertinent strategy for
mitigating such a tradeoff is based on the sub-
space method, which takes into account local
projection onto a subspace of model parameters
(Kennett et al., 1988; Kennett and Sambridge,
1998; Baumstein, 2014, 2015). In addition to the
subspace method, we need to consider constraints
on this multiparameter reconstruction as, for ex-
ample, projections onto convex sets (POCS)
(Baumstein, 2013).

In a multiparameter framework, we are inter-
ested in the reconstruction of several classes of
parameters my, with j = 1, M, where M is the
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number of parameter classes to be reconstructed.
Using these notations and following equation 6,
the gradient of the misfit function with respect
to the parameter class j is given by

oo adm
aicl, =], JioJ o,

X (d;‘;n(xs, X, t)—d (X, X,,1))dxdx. dt.
(43)

(XSIXI‘let)

Equation 43 is particularly interesting because it
reveals that the gradient of the misfit function
with respect to parameter class j is computed as
the sum over the sources and receivers of the
zero-lag crosscorrelation in time of the residuals
with the partial derivatives of the synthetic data
with respect to parameter class j.

The latter quantity can be expressed as

ody)

syn 5
ani]j = dSYﬂ(m + dml) - dsyn (m) + O(Hdm]“ );

(44)

in which dm, is a perturbation of the model pa-
rameter j. The partial derivatives of the synthetic
data with respect to parameter class j correspond
to the perturbation of the signal recorded at the
receivers, which would be caused by the intro-
duction of a perturbation dm; in the first-order
approximation. This is the single scattering ap-
proximation — the perturbed signal can be inter-
preted as the one generated by the scatterer dm;
acting as a secondary source.

From equations 43 and 44, we see that the
only differences in the updates brought by the
gradient to the different parameter classes come
from the variation of the perturbed signal with
the parameter class. If two parameter classes have
similar scattering responses, the gradient of the
misfit function does not allow us to distinguish
between these two parameter classes. This is
what is often referred to as tradeoff or crosstalk
between parameter classes.

Of course, the structure of the Hessian opera-
tor will depend on the parameter selection,
which can mitigate the tradeoff interaction
among parameters (Innanen, 2014). We may
also look at the expression of the Hessian opera-
tor. For the sake of simplicity, we will only con-
sider the Gauss-Newton approximation. In a
multiparameter context, this matrix is composed
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of M? blocks with a symmetric structure. The ijth
block is given by

(Hooyxx)= [ [ [ ar;f“ Xe %)

syn

(45)

X=Sm (x,,X,, X, t)dxdx.dt.

l

Now we see that block ij of the Gauss-Newton
operator is computed as the sum over all sources
and receivers of the zero-lag crosscorrelation in
time of the signals scattered by perturbations of
the parameter classes i and j. As such, it is a mea-
sure of the correlation between the scattering re-
sponse of parameter class i and that of parameter
class j. This reveals that the inverse Hessian op-
erator can act as a decoupling operator on the
gradient and should help remove crosstalk
artifacts.

In order to illustrate these basic concepts of
multiparameter inversion, we consider the
simple example of 2D acoustic-frequency-do-
main FWI for simultaneous reconstruction of
the P-wave velocity and density. The scattering
response (or radiation pattern) of these two pa-
rameters for a given point of the medium in
the acoustic approximation is illustrated in
Figure 16. As can be seen at the scattering point,

Distance (km)

Incident source

Depth (km)

10

the radiation pattern of the P-wave velocity is
isotropic. The radiated energy has the same am-
plitude in all directions. Conversely, the radia-
tion pattern of the density at the same scattering
point is directional because the energy of the
scattered signal is mostly concentrated at short-
angle illumination. From these two diagrams,
one can thus expect that the coupling between
the two parameters will be stronger if the seismic
acquisition concentrates on small illumination
angles, whereas it should be less severe if the ac-
quisition spans a broader range of illumination
angles.

Now consider the following tutorial experi-
ment. A square homogeneous background is per-
turbed in its center with two nonoverlapping
inclusions of P-wave velocity and density, re-
spectively (Figure 17). Seismic data are acquired
on this perturbed medium. The initial model is
set to the background homogeneous model, and
we attempt to simultaneously recover the two
perturbations from the seismic data by using
multiparameter FWI.

Two acquisition configurations are consid-
ered. The first is a fixed-spread surface acquisition
with sources and receivers on top of the domain
only (with just small illumination angles). The
second follows a fixed-spread full-illumination
design with sources and receivers all around the
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Figure 16. Radiation pattern at the scattering point for (a) P-wave velocity and (b) density, in the acoustic
approximation. Whereas the radiation pattern of the P-wave velocity is isotropic (the energy is scattered with
the same intensity in all directions), the radiation of the density is directional. The energy is mostly scattered

for short illumination angles.
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Figure 17. Perturbed (a) P-wave velocity and (b) density models used for the multiparameter tutorial test.

target zone (with a broad range of illumination
angles). In Figure 18, the model perturbation de-
duced from gradients with respect to the P-wave
velocity parameter and the density parameter in
the surface-acquisition case are presented. As
could be expected, the similarity of the radiation
patterns of these two parameters for small illu-
mination angles makes their gradients almost
identical.

In Figure 19, the model perturbation deduced
from gradients with respect to the P-wave veloc-
ity parameter and the density parameter are pre-
sented in the full-acquisition case. Despite a
broader range of illumination angles, the P-wave
velocity gradient contains a strong imprint of
the density perturbation. The density gradient
contains two perturbations of equal intensity:
one at the position of the P-wave velocity and
one at the position of the density. Compared
with the surface illumination case, the geometric
shape of the full-acquisition perturbation is bet-
ter recovered. However, the tradeoff between the
two perturbations is still strong.

The Gauss-Newton operator is computed for
the two acquisition setups and is presented in
Figure 20. In both cases, the upper diagonal
block corresponds to the second-order deriva-
tives with respect to the P-wave velocity, whereas
the lower diagonal block corresponds to the sec-
ond-order derivatives with respect to the density.
The off-diagonal blocks are identical, as a result
of the symmetry of the Hessian operator. They
correspond to the cross derivatives with respect
to P-wave velocity and density (see equation 45).
As can be seen, the amplitude of the P-wave ve-
locity block is larger in the full-illumination

setup. This is due to the similar sensitivity of this
parameter to all illumination angles, whereas the
density is only sensitive to short illumination
angles. Because the Gauss-Newton operator is
built as a sum over source and receiver pairs, the
contribution of large-offset pairs accumulates for
the P-wave velocity, whereas the corresponding
contribution for the density is almost negligible.
Conversely, for surface acquisition, the ampli-
tudes of the blocks are comparable, because only
short illumination angles contribute to these
blocks.

To further analyze the differences between the
two configurations, we perform a singular value
decomposition (SVD) of the two operators (full il-
lumination versus surface illumination). The sin-
gular value distributions are presented in Figure
21. One can see that the decrease of the singular
values is faster for surface illumination, which in-
dicates a poorer conditioning of the operator in
this case. On the basis of this SVD decomposition,
it is possible to derive an approximate inverse of
the Gauss-Newton operator by truncating the sin-
gular values below a certain level, represented by
dotted lines in Figure 21. Neglecting the smallest
singular values defines a regularized version of the
inverse Gauss-Newton operator. We apply this ap-
proximate inverse to the gradient in the surface-
acquisition case (Figure 18) and the results are
presented in Figure 22. The perturbations brought
to the parameter by this preconditioned gradient
are decoupled correctly compared with the one
brought by the gradient alone. The shape of the
perturbations is recovered. That illustrates the po-
tential for the Hessian operator to mitigate cross-
talk between parameters.
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Figure 18. Model perturbation deduced from gradients obtained for (a) the P-wave velocity and (b) the

density in the surface-acquisition case.
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Figure 19. Model perturbation deduced from gradients obtained for (a) the P-wave velocity and (b) the

density in the full-acquisition case.

However, computing an approximate inverse
of the Gauss-Newton operator through a trun-
cated SVD method is not affordable for large-
scale optimization problems. Approximations of
the inverse Hessian operator adapted to large-
scale problems have to be considered — namely
I-BFGS (Nocedal, 1980; Nocedal and Wright,
2006) or the truncated Newton method (Nash,
2000).

The I-BFGS strategy consists of rank 2 updates
of an initial approximation taken as the identity
if no prior information is known. These rank 2
updates are based on the I-previous values of the
gradient, so the [-BFGS strategy does not require
computation of quantities other than the gradi-
ent in order to build an approximation of the
inverse Hessian operator. However, the quality of

this approximation in the early iterations strong-
ly depends on the prior knowledge of the inverse
Hessian operator. Starting from the identity, the
initial model updates are along the direction of
the model gradient. In a multiparameter con-
text, as illustrated by the tutorial case study pre-
sented here, this can be harmful for a decoupled
reconstruction of the parameter classes. Tradeoffs
are introduced in the early stage of the inversion,
making it extremely difficult to decouple the pa-
rameters in the later iterations.

On the other hand, the truncated Newton
method is based on an inexact solution of the
Newton equation (equation 5) through a matrix-
free conjugate-gradient method. This requires
the ability to compute Hessian-vector products
efficiently. As emphasized in Epanomeritakis
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Figure 20. Gauss-Newton operator for (a) full acquisition and (b) surface acquisition. Upper diagonal blocks
correspond to second-order derivatives with respect to the P-wave velocity. Lower diagonal blocks correspond
to second-order derivatives with respect to the density. Off diagonal blocks correspond to crosscorrelation of
the derivatives with respect to P-wave velocity and density and express the crosstalk between the two
parameters. The isotropic radiation pattern of the P-wave velocity makes the misfit function sensitive to this
parameter for all illumination angles. This explains the stronger amplitude of the upper diagonal block for
full illumination, whereas the amplitudes of the different blocks are comparable for surface acquisition.
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Figure 21. Normalized singular values of the Gauss-
Newton operator for full illumination (blue) and
surface illumination (red). The decrease of the
singular values is faster for surface illumination,
which indicates a poorer conditioning of the
operator in this case. Dotted lines specify threshold
values used for building preconditioned gradients.

et al. (2008), Fichtner and Trampert (2011), and
Meétivier et al. (2013, 2014), this can be per-
formed through a generalization of the adjoint-
state strategy usually implemented for computa-
tion of the gradient. The computation of Hessian-
vector products thus only requires additional
wave-propagation problems to be solved. The

advantage of the truncated Newton method in a
multiparameter FWI context is that the accuracy
of the inverse Hessian approximation should be
the same from one iteration to the other. This is
especially important for the first iterations: the
truncated Newton method should enable us to
better decouple the parameters in the early stag-
es of the inversion.

The optimization strategies used in the con-
text of realistic-scale multiparameter FWI appli-
cations should be completed with efficient pre-
conditioning strategies. In this context, a precon-
ditioner is an approximation of the inverse
Hessian operator, which can be computed at low
cost and inserted in the optimization framework.
Both the I-BFGS and truncated Newton methods
can be used with a preconditioner (Métivier and
Brossier, 2016). A generalization of the diagonal
preconditioner proposed by Shin et al. (2001)
and improved by Choi and Shin (2008) has been
recently promoted by Innanen (2014) and
Meétivier et al. (2015). This strategy amounts to
approximating each block of the Hessian by a di-
agonal matrix, following the pseudo-Hessian ap-
proximation of Choi and Shin (2008). The pre-
conditioner is computed as an inverse of this
block approximation, which can be computed
straightforwardly through local inversion of
these corresponding submatrices. The leading



R1-30 Encyclopedia of Exploration Geophysics

Distance (km)
a) 0 0;2 0;4 0.6

1.0
0.8
0.6
0.4
. 0.2
0
-0.2
I+ —0.4
-0.6
-0.8
0.6 -1.0

0.2+

Depth (km)
Velocity (m/s)

0.4+

Distance (km)

b) 0 0.2 0.4 0.6
o " " "

0.2 T
£ 2
£ 2z
g - 2
[ o

0.4 a

0.6

Figure 22. Model updates obtained after applying the approximate inverse Gauss-Newton operator to the
gradient in the surface-acquisition case. The two perturbations in (a) P-wave velocity and (b) density are
correctly decoupled. The shape of the perturbation is recovered.

idea is to account in this preconditioner for the
local coupling between parameters, neglecting
the spatial interaction that may exist between pa-
rameters of different classes. Preliminary results
seem to indicate improved reliability of multipa-
rameter inversion results by using this precondi-
tioner in conjunction with the truncated Newton
method (Métivier et al., 2015).

Summary and the future of FWI

Full waveform inversion has been found to be
a useful tool for extracting pieces of information
from seismograms/traces. Of course, this poten-
tially high-resolution performance comes with
strict requirements related to the cycle-skipping
problem, because we are concerned about seis-
mic oscillatory signals. The workflow related to
the model updating has been mitigated through
an adjoint formulation in which the gradient
vector of the misfit function with respect to
model parameters is evaluated directly without
dealing with Fréchet derivatives. An extention
for handling the Hessian matrix is still a chal-
lenging subject, although a second adjoint for-
mulation could provide an efficient strategy.

The fundamental feature of FWI is the ab-
sence of prior scale separation for signal interpre-
tation; the single scattering formulation is at the
core of FWI and each seismic phase is interpreted
the same way by using this scattering assump-
tion. That is the physical intuition on which FWI
is based. FWI may benefit from the different
hierarchies found in the seismic data. Various
formulations have been developed in recent

years that are based on such hierarchies. Basic
concepts related to linear partial differential
equations (forward modeling) as well as linear
algebra (linearized optimization) can be handled
quite naturally when starting an FWI investiga-
tion. The gradient can be computed efficiently
by using either a second-order hyperbolic wave
equation or a first-order hyperbolic wave equa-
tion. The choice is really application-dependent.

Uncertainty quantification and model-driven
ingredients are important new trends in FWIL
The construction of the initial model to make
FWI accurate and efficient is a very active re-
search area because it is a critical issue for this
technique. A simple and systematic strategy is
based on the introduction of scale separation
tied to FWI concepts. No phase picking is per-
formed in this strategy. Other strategies may
perform as well for high-resolution seismic im-
aging, and considerable progress will be made.
Of course, an extension to 3D will be the selec-
tive criterion for those different methods.

FWI is evolving toward elastic probing of the
medium because the focus is increasingly on am-
plitude information. This probing will require
multiparameter reconstruction in which the
Hessian matrix, the second derivative of the mis-
fit function, will play a crucial role.

For people involved in high-resolution seis-
mic imaging, the trend is the steady movement
from impressive real-world examples that are
based on acoustic propagation towell-constrained
multiparameter reconstructions that increasing-
ly are based on elastic propagation. At the same



time, other challenges, such as microscale char-
acterization (Dupuy et al., 2016), may need alter-
native optimization strategies such as global op-
timization.

Appendix A: Lagrange multipliers

Optimization wunder constraints can be
achieved using Lagrange multipliers. We present
a systematic if not automatic workflow for build-
ing the misfit-function gradient. Let us reiterate
that the expression of the misfit function is

1 ¢T. 2
C(m) = ZJ.O '.'395 agr(dsyn(xrlxsft) - dobs(xr'Xslt))
x dx, dx dt, (A-1)

and the relation between synthetic data and
computed wavefields is given by the expression

dsyn(xr/ t) = RI'W(XI t) (A-Z)

The first adjoint wavefield A has the same
number of components as does the wavefield
vector w, whereas the second field u has the
same number of components as does the data
vector d,,. They are related to a new auxiliary
expression £, called the Lagrangian, which de-
pends now on independent quantities (m, w, 2,
dy,, 1). At sampled model points, often called
realizations, these quantities u,w,A are linked
through the wave/adjoint equations and the
projection relation to the model vector m. Such
conditions are defined as constraints. Over the
entire domain Q, the Lagrangian can be written
as

£(m,d,u,w,2) = Cm,w)+ 33 J()detu(xr,t)T

% (A (X, 1)~ RWX ) + ZZJOTW [ dtax acx,0"

X [M A, W(X,t) - ME" (x,t) - D(V)W(X, t)].
(A-3)

A necessary requirement is that the differen-
tial form 6L should be zero at the minimum,
which is identical for Lagrangian and misfit
functions. Therefore, the five gradients of £ with
respect to arguments (which are considered as
independent) should be equal to zero through
the list:
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(1) Zeroing the gradient with respect to the
vector u comes from the projection relation
(equation 24).

(2) Zeroing the gradient with respect to the
vector d,,, leads to the equation

syn

(X, t) = (dsyn(xr/t) —dgps (X, 1)), (A-4)

at each receiver, taking into account that
ac/adsyn = (dsyn(xr)t) = d s (X, 1)).

(3) Zeroing the gradient with respect to the
vector A gives the wave equation.

(4) Zeroing the gradient with respect to the
vector w provides the partial differential
equation verified by the vector A, which is
called the adjoint wavefield.

(5) Zeroing the gradient of the Lagrangian
function with respect to the parameter
vector m will provide a new perturbation
solution for updating the model.

Let us work out the fourth condition. Away
from sources, we find the expression

- %L‘; 5w+ 2 2 jOT jﬂ dtaxA(x,t)"

X aiw[M o,W(x,t) - D(V)W(X,t)]- ow,

E oW
ow

(A-5)

and, with the help of the symmetry of matrices S
and D as well as an integration by parts, we find

aL" acT T,
S ow W~5w-§2jo J.thdx
x[M,A(x,t) - D(V)A(x,1)]" - 6w, (A-6)

which should be equal to zero at the minimum.
For the integration by parts, we have considered
that boundary conditions are such that direct w
and adjoint A wavefields are zero outside the do-
main Q, that initial conditions for the direct
wavefield are zero, and that final conditions for
the adjoint wavefield are zero. The gradient of
the misfit function C with respect to the wave-
field w can be written as

BCT T oC'
ZRr ad,,,

= Y RIRW(xX,1) - d (X, 1))

(A-7)
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We deduce that the adjoint wavefield should
verify the following partial differential system

M, A(x,t) - D(V)A(x, 1)

= Rl A, (%, 1) = dgps (%, )] (A-8)

with conditions A(x, T,) =0. The source terms of
this equation are the residuals at the receivers.
Note that we sum only over receivers associated
with the same source. Receivers emit unex-
plained residuals inside the medium, and we in-
tegrate in time from the final recording time.
Equivalently, we can revert time in the residual
source and use the final residuals as initial condi-
tions for a backward time integration using a
negative time step. We consequently propagate
the adjoint wavefield in the forward way as the
direct wavefield using the same code. Of course,
we shall not use the implicit system (equation
235) for the adjoint field estimation but instead
will use the equivalent explicit system

A, Mx,t) -~ AD(V)A(X, 1)
= 2 A(X)RTT(dsyn (Xr/t) - dObS(XI t))l (A'9)

where the adjoint source term related to resid-
uals has been modified by medium properties
at the receiver positions, because we want to
solve the adjoint problem using the explicit
time integration. This source term is highly de-
pendent on the local properties at receivers
and, therefore, on the recording quantities at
these positions.

Finally, let us consider the fifth condition.
Zeroing the gradient of the Lagrangian £ with
respect to the expected new model solution
m + Am will give us the expression

T
% (m+Am)=0 (A-10)

to be solved through the Newton method. For
that, we will need the gradient (9£/om)"x
(m,d,u,w, 1) at the current solution (a model re-
alization in which fields, identified by the upper
bar sign, verify constraints). This gradient turns
out to be equal to the misfit gradient (9C/om)" (m)
at these realizations. When considering the
Lagrangian function with independent variables,

the misfit function does not depend explicitly
on the model vector. Consequently, we have

ot
om

.om =

j dt[/lT(X )2 (x)(a w(x,t)
T
—s’(x,t))} -om. (A-11)

At the realization point, we have

dL(m,d, u(m),w(m), /l(m)) dC
om T om (m),

(A-12)

and, therefore, one can deduce the misfit func-
tion gradient we are seeking,

om0 = Zf, a2 05T 0w )5 )
(A-13)

Note that there are no explicit spatial deriva-
tives in this estimation of the gradient, which is
based on the first-order hyperbolic system
(velocity-stress):

aanl(x) - 2 jOT dta’ (x, t)g%(x)atw(x, £). (A-14)

Using the density and the compliance compo-
nents, we find again the expressions

gf)(x,a =3, oo x2 x

a5, 0=2 [ dt{aomx)[as ) z"(x»},
(A-15)

with implicit summation over the capital indi-
ces. The matrix dS/dS;; is composed of elements
of values zero or one. From the identity
SC =CS =1, let us remark that the gradient of the
compliance matrix with respect to model param-
eters is

=S(x; ) (X )S(x;)

(x)C7'(x;).

%(Xi) =

=-Cl(x; (A-16)

)a



Away from sources, the gradient with respect to
model parameters can be decomposed into

o 0= X[, dttom )z )
aC T, t
3Gy (0 =2 ], i xPox, 0]

aC - .
: (aCk’ (Xi))MN [CN}(X")/I/ (x;, 0],
(A-17)

which can be used as long as particle velocity
and stresses are available with implicit summa-
tions over capital indices. The matrix dM/dMj; is
composed of elements of values zero or one. We
may consider the equivalent system

o= X[} dttom )2

ac T, 9C o,
ac, (X = _g [ At0,e; (xi ) 5 - (2] (),

(A-18)

as shown in the main text, which can be ob-
tained with the extended second-order hyper-
bolic system.
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