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Abstract
Full waveform inversion (FWI) is a high-

resolution seismic imaging technique that is 
based on using the entire content of seismic 
traces for extracting physical parameters of the 
medium sampled by seismic waves. The wide-
spread strategy of seismic imaging, the single 
scattering formulation, at the core of FWI, as-
sumes no prior scale in the model description. 
Each unexplained residual data sample at receiv-
ers for one source is assumed to come from any 
point of the medium, and only the summation 
over sources and receivers helps in locating me-
dium property anomalies, regardless of what 
type of phase is involved. This pixel-oriented 
perturbation leads to the local optimization ap-
proach, which is a linearized differential ap-
proach based on the Newton equation. For a 
least-squares misfit function, there are both the 
gradient vector and Hessian matrix, in addition 
to approximations that can be considered for 
the related Newton equation. The forward prob-
lem of the wave propagation, used thousands of 
times during optimization, should be efficient, 
and these equations are expressed either as a 
first-order hyperbolic system of velocity-stress or 
as a second-order hyperbolic system of displace-
ment (or velocity) only, by using a self-adjoint 
formulation in both cases. Gradient vectors are 
built as a zero-lag crosscorrelation in time be-
tween incident and adjoint wavefields with for-
ward and backward patterns and also could be 

used for obtaining Hessian-matrix approxima-
tions. Resolution and uncertainties are relevant, 
although the actual state of the art does not pro-
vide meaningful estimation of these quantities: 
the FWI remains a deterministic approach at 
this time. An examplary North Sea data set from 
the Valhall reservoir illustrates the successful 
story for high-resolution imaging based on data-
driven components, with paleorivers stored in 
sediments, imprints of glaciers in the bedrock, 
and gas clouds at different scales in the image. 
Alternative sources of information on the medi-
um, such as sonic logs and geologic interpreta-
tion, are illustrated through a model-driven 
component of the misfit function. Although 
methods can be used to increase the speed of the 
workflow, they are quite costly. The multiparam-
eter reconstruction, which is mandatory for 
elastic FWI, starts to be feasible if one improves 
the Hessian-matrix influence. Thus, FWI is be-
coming a mature strategy for high-resolution 
seismic imaging.

Introduction
Remote-sensing methods are essential for 

characterizing the interior of the Earth at differ-
ent scales, from the shallow subsurface to the 
inner core. Interaction between seismic waves 
and matter is expected to provide the highest 
resolution of these indirect osculating physical 
methods, compared with the results from gra-
vimetry, geomagnetism, or electromagnetism. 
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Natural events, such as earthquakes, make the 
problem quite challenging because one also 
needs to characterize the sources, whereas con-
trolled-source seismology focuses mainly on re-
construction of the structure.

During the rapid growth of seismic imaging 
methods over the last 50 years, two types of in-
teractions have been identified. The first is a 
smooth interaction between waves and the me-
dium that occurs where wave directions are 
slightly deviated by variations of the medium 
properties. One can assume that small variations 
in the wavefront result from this type of interac-
tion, thereby allowing waves to continue to 
propagate forward after the interaction, in a for-
ward scattering that is related to a transmission 
regime. The second is a rough interaction that 
occurs where wave directions are significantly 
modified by medium properties, resulting in a 
backward scattering that is related to a reflection 
regime; after that interaction the waves move 
backward. For example, reflection waves have a 
completely different direction of propagation, 
compared with that of the incident wave. Waves 
are bounced back toward the receiver position. 
One phase may mix both interactions during its 
propagation inside the medium. Other types of 
interactions could contribute to the model up-
dating, in the form of multiple scattering effects, 
and could lead to a diffusive regime that requires 
other strategies for model building (Wu, 1985; 
Wu and Aki, 1988). Let us point out that forward 
modeling will introduce these multiple scatter-
ing and diffusive effects for the current model if 
there are corresponding heterogeneities.

These two types of interaction can be ob-
served on the hierarchical organization of seis-
mograms or traces (Figure 1). For a smooth inter-
action, traveltimes of a given phase could vary 
smoothly, whereas different bursts of energy oc-
curing along the time axis characterize the rough 
interaction. These two probing interactions of 
medium properties have led naturally to two 
strategies for imaging the medium. The first type 
of reconstruction is based on tomographic ap-
proaches in which one tries to reconstruct the 
smoothly varying properties of the medium by 
tracking essentially slow variations of phases (or 
traveltimes). Thus, for these analyses, we have 
many approaches depending on the phases we 
consider as first-arrival phases, refraction phas-
es, reflection phases, or surface-wave phases, 
among the various possible phases (combining 

these approaches improves the reconstruction) 
(Thurber and Ritsema, 2007). For example, first-
arrival phases have inflections, as do the reflec-
tion phases, leading to traveltime tomographies. 
Reflection phases exhibit this smooth interac-
tion on their downward and upward paths, 
along with the rough interaction at the interface 
or at diffracting points.

The second type of reconstruction is based on 
the so-called migration, either in time or in space, 
connected with Huygens’ principle in which 
rapid variations of medium properties are tenta-
tively reconstructed. Recent formulations have 
improved such imaging toward more quantita-
tive estimations of the medium properties, such 
as least-squares migration (Nemeth et al., 1999). 
A related tool is amplitude-variation-with-offset 
(AVO) or amplitude-variation-with-angle (AVA) 
analysis, which characterizes a target zone from a 
single phase (Demirbag et  al., 1993; Ursin and 
Ekren, 1995; Gray et al., 1998).

Considering the wavenumber domain, de-
duced by applying a Fourier transformation from 
the space domain, the low-wavenumber content 
is investigated by traveltime tomographic meth-
ods, whereas the high-wavenumber content is 
built by migration methods. Claerbout (1985) 
gives a simple presentation of such reconstruc-
tions, essentially along the depth direction, 
showing a poor reconstruction of intermediate 
wavenumber ranges (Figure 2). Are seismic waves 
inadequately sensitive to intermediate wave-
number ranges or are we designing standard imag-
ing approaches that are not sensitive to interme-
diate wavenumbers? What seismic-trace infor-
mation should we consider for building the 
low-wavenumber content? What information do 
we need for the high-wavenumber content? Do 
we need additional information, especially when 
we try to extend the two zones at the limit of the 
expected resolution of seismic data?

Tarantola (1984) has investigated an approach 
for avoiding this distinction between the expect-
ed smooth and rough interactions. On the basis 
of the single scattering formalism, all phases are 
considered under the same type of interaction 
(Devaney, 1984), regardless of the modification of 
the wave propagation induced by the properties 
of the medium. This formalism for updating the 
medium properties is embedded into the linear-
ized approach called full waveform inversion 
(FWI); under the same concept of wave/medium 
interaction (each piece of information in the data 
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domain the same way), one should consider all 
phases contained in the traces for imaging. Any 
type of propagation should be taken into consid-
eration in the same way for model updating. The 
multiple interactions of waves with the medium 
come only when the forward modeling is per-
formed.

The key point of such a formulation derives 
from a unique way of considering the interac-
tion between waves and matter. No prior scale 
separation is considered in this imaging strategy. 
Still, FWI is a linearized formulation in which 
the nonlinearity of waves with respect to the 

medium properties is introduced by the wave-
propagation engine. In our approach we do not 
use any linearization of the forward modeling — 
such as the linear Born approach — which is 
considered in migration approaches. When we 
reconstruct our model by beginning with an ini-
tial model and revising it iteratively, nonlineari-
ty is implicitly introduced by repeated exact for-
ward modeling at each update stage. We also 
point out that the misfit between observed data 
and synthetic data is a continuous function that 
will behave well locally, thereby allowing the in-
troduction of the stochastic optimization ap-
proach under the Bayesian approximation, as 
Tarantola (1987) promoted.

We shall first consider the prior assumption 
of the single scattering approach, in which no 
scale separation is used. We then discuss what is 
the associated forward problem performed in 
the current model (not the initial model), so that 
we can provide practical measures for updating 
the model. We highlight the components neces-
sary for seismic imaging, leaving the technical 
description of the adjoint formulation to the 
Appendix. We next discuss the resolution and 
uncertainty estimation in this context of a deter-
ministic approach. We have all of the required 
elements for an illustration of full waveform in-
version, and we highlight FWI results obtained 
for the Valhall reservoir in the North Sea by dif-
ferent groups.
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Figure 1.  Common shot gather with different organized hierarchies in the time recording. Among these 
hierarchies, bursts of energy with reflection phases (yellow curves) express the reflection regime with time 
delays, whereas undulations visible both on direct waves (red curves) and on hyperbolic branches of reflected 
phases (yellow curves) identify the transmission regime.
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Figure 2.  Extraction percentage of vertical model 
variation when considering the vertical component 
kz of the wavenumber vector. Tomographic tools 
reconstruct the smooth part of the velocity structure, 
whereas migration tools reconstruct the contrasted 
part of the velocity structure. There is an apparent 
insensitivity at intermediate values of wavenumbers. 
After Figure 1.4-3 of Claerbout (1985). Used by 
courtesy of J. Claerbout.
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We need to start from an initial model, but 
the challenging issue of defining that model has 
required many tentative strategies that we shall 
recall for possible future investigation by the 
reader. We prefer to focus on a specific one that 
is driven by the usual concepts of seismic imag-
ing. This strategy may give the reader a better, 
more practical understanding of how full wave-
form inversion works. Because full waveform in-
version is a heavily computational task, we brief-
ly present strategies for speeding up the algorith-
mic aspect of the total workflow, regardless of 
the possible hardware solutions to be considered. 
Requirements for multiparameter reconstruction 
are analyzed and should lead scientists to con-
centrate future research efforts on the Hessian 
matrix. Different imprints of the parameters in-
side the data, and the possible tradeoffs among 
the parameters, will be near-future challenges of 
full waveform inversion. With that, we conclude 
our examination of this important technique, 
which has found its place in tools deployed by 
the seismic community for improving seismic 
imaging by increasing the extraction of informa-
tion from more data samples than was previous-
ly possible.

Single scattering formulation
Extracting information contained in records 

of particle motion can be quite challenging be-
cause the seismic waves being recorded are trav-
eling over large distances, thereby making am-
biguous the position in the medium where prop-
erty changes are inducing modifications in wave 
travel. To overcome such ambiguity, we proceed 
through a perturbation strategy in which ob-
served seismic traces are compared with synthet-
ic ones computed in a given medium. From re-
siduals between observed and synthetic traces, 
we use perturbation iteratively to update the 
medium properties by employing full wave mod-
eling to recompute synthetic traces in each up-
dated medium. Designing the initial medium is, 
therefore, a critical step of such a local procedure. 
The estimation of property perturbation, starting 
from a given model with specific properties, is 
based on a single scattering formulation in which 
we attempt to reconstruct perturbation values at 
a single point. The perturbations are added to 
those of the current medium. Therefore, when 
we want to update the model, we consider the 
medium to be a sum of rather independent dif-
fraction points (or pixels) where properties 

should be updated without any hierarchical 
strategy in the analysis of the types of waves (re-
lated to medium/wave interaction) we are exam-
ining in the data domain. Other strategies may 
represent the model with surfaces — such as in 
the common-reflection-surface (CRS) method, 
which links many points of the medium in a col-
laborative manner (Hubral et al., 1998; Heilmann 
et al., 2006; Koglin et al., 2006). Recall that the 
forward modeling will link pixels through the 
full resolution of the wave equation; multiple 
diffractions and reflections are included in the 
propagation. During updating, pixel interaction 
is more complex to assess and will depend on the 
misfit definition and on the related descent di-
rection. It is different from the linking of the for-
ward modeling.

Geophysical diffraction tomography (Devaney, 
1984; Wu and Toksöz, 1987; Mora, 1989; Huang 
and Schuster, 2014) based on the single scatter-
ing formulation will provide a quantified estima-
tion of wavenumber sampling from seismic data. 
This theory includes all scattering angles related 
to forward and backward scatterings, which are 
not distinguished. Their contribution will be 
quite different in the process of model building 
because backward scattering (small angles) has a 
tendency to locate the possible model-property 
variation, whereas the forward scattering (flat 
angles) has difficulties doing the same thing 
when considering all of the contributions com-
ing from the acquisition. The record contribu-
tion at the receiver coming from a scattering 
point illuminated by the incident wave from 
the source depends on local orientations of the 
incident and scattered waves. Waves hitting the 
scattering point are leaving the source with an 
angle ϕs and will illuminate the scattering point 
with an angle Φs. Scattered waves leave the scat-
tering point with an angle Φr and reach the re-
ceiver with an angle ϕr. The forward slowness 
vector ps and the backward slowness vector pr 
are constructed with an illumination angle  for 
obtaining the illumination vector q, which is 
linked to the wavenumber vector k through the 
expression

	
k q n n= = Ê

ËÁ
ˆ
¯̃

= Ê
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ˆ
¯̃

2
4

2
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2w p q p
l

qf
c cos cos ,

	
(1)

where the angular frequency is denoted by 
 = 2πf (frequency is denoted by f  ), the local 
wavelength is represented by λ (related to the 
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local velocity c), and the vector n is the unitary 
vector colinear to both illumination and wave-
number vectors (Figure 3). One can see that we 
may obtain small wavenumber values by de-
creasing the frequency or by having angle  close 
to , which is the transmission regime we con-
sidered in the introduction. In other words, even 
high-frequency contents in phases (short wave-
lengths) may provide low-wavenumber informa-
tion (small wavenumbers) of the model if we are 
able to identify the so-called transmission regime 
of these phases. Of course, this analysis and the 
related updating are performed in the current 
model and will be modified at each iteration.

Considering a source frequency band between 
fmin and fmax that is related to a minimum wave-
length λmin and a maximum wavelength λmax, the 
sampling of the wavenumber space is shown in 
Figure 4 for a homogeneous medium with a flat 
interface and is inspired from figures by Wu and 
Toksöz (1987) and Mora (1989) when they were 
investigating a broad range of frequencies. One 
can see that low-vertical-wavenumber values are 
difficult to sample and depend strongly on the 
minimum frequency of the source as well as on 
the offset range. With increases in the offset 
range  come commensurate improvements in 
transmission configuration and, therefore, the 

contribution of diving waves, thereby leading to 
a better sampling of low vertical wavenumbers. 
Under the single scattering formulation, in which 
no phase interpretation is performed, we have 
difficulty filling some zones of the wavenumber 
spectrum when using the data. If necessary 
for  the wave-propagation modeling (especially 
the low-wavenumber components), these zones 
should be present in the initial model. We shall 
see that going back to phase identification with-
out precise picking will allow a compatible fill-in 
of these zones for better full waveform recon-
struction.

Local optimization strategy
Let us assume that the model space is de-

scribed over a diffraction domain D where prop-
erty perturbations Δm should be updated at the 
scattering point x. Because we have at our dis-
posal a model inside which wave solutions can 
be provided between source positions xs span-
ning a domain ∂Ωs or receiver positions xr span-
ning a domain ∂Ωr and any scattering position x, 
we may consider the imaging operator O to be 
designed from current model m and available 
data d as

D = DÈÎm x d x x x x x d x x

d x

m m m

m

( ) ( ) ( )

(

Odata s r s r syn s

syn r

, , , , , , , , ,

,

t t

xx, ˘̊t) ,
	

(2)

where the model perturbations Δm to be defined 
are linked to the residuals Δmd(xs,xr,t) between 
observed traces dobs(xs,xr,t) and synthetic traces 
d x xm

syn s r( ), ,t . Synthetic wavefields between 
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Figure 3.  Single scattering geometric configuration. 
At the point of diffraction, where model properties 
have to be reconstructed, the incident wave arrives 
with an angle Φs, providing a wavenumber vector ps. 
Corresponding receiver data or residuals are back-
propagated in the medium and will arrive with an 
angle Φr at the diffracting point, providing a 
wavenumber vector pr. The angle  between these 
two vectors is the illumination angle, and the 
vectorial composition of these vectors provides the 
illumination vector q, a key ingredient for parameter 
imaging at the diffracting point. Waves leave the 
source with an angle ϕs and arrive with an angle ϕr at 
the receiver.

kz

kx

4π/λmin

–4π/λmin –4π/λmax 4π/λmax 4π/λmin

2π/λmax

0

Figure 4.  Continuous sampling of wavenumber 
space based on the single scattering formulation, 
regardless of the types of waves. The zone of 
sampling is the black-dotted zone. As offset range 
increases, the wavenumber sampling can conquer 
the grey-star zone.
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sources and scatterers d x xm
syn , ,( )s t  on one side 

and between receivers and scatterers d x xm
syn r( ), ,t  

on the other side are necessary ingredients, as are 
the geometric positions of sources, receivers, and 
scatterers.

The imaging operator could be designed 
through different approaches, such as the direct 
inversion approach based on an integral formu-
lation (Bleistein, 1987; Miller et al., 1987; Beylkin 
and Burridge, 1990; Weglein et  al., 2009) or 
through an optimization inversion such as the 
least-squares minimization (Tarantola, 1987). 
We shall consider the second approach and em-
phasize that a possible bridge could be built with 
the direct inversion (Jin et al., 1992). Therefore, 
the FWI problem is defined as a nonlinear least-
squares minimization problem of the misfit 
function C  through the rather standard least-
squares misfit function

	

min ( ) ( )

( )

m

mm d x x

d x x x

C = |

- |

Ú Ú Ú∂ ∂

1
2 0

2

T
t

t d d

w

s r

syn r s

obs r s r

W W
, ,

, , xxsdt , 	 (3)

where the modulus operation is denoted by the 
symbol | ◊ |. Other misfit functions could be de-
vised as long as we can perform the derivation 
with respect to model parameters. The duration 
of observation, because the origin time is set to 
zero, is given by Tw. This problem is solved 
through local nonlinear optimization algo-
rithms. In the framework of these methods, an 
iterative sequence mk(x) is built from an initial 
guess mini(x), such that

	 m m mk k k k+ = + D1 a , 	 (4)

where the scalar parameter ak ŒR is computed 
through a linesearch or a trust-region globaliza-
tion process (Nocedal and Wright, 2006; Bonnans 
et al., 2006). In the particular case of the Newton 
method for linear problems, the parameter αk is 
set to 1 and the model update Δmk is deduced 
from the Newton equation

	 H C( ) ( )m m mk k kD = -— . 	 (5)

In this expression, the operators H( )mk  and 
—C( )mk  are, respectively, the Hessian matrix and 
the gradient vector of the functional C( )m  at the 
iteration k. These two key components of the 

FWI method can be expressed in terms of the 
Jacobian operator J ( )m d m= ∂ ∂syn /  as

— = -

= + ∂
∂ -

C J

H J J
J

( ) ( )( ( ) ),

( ) ( ) ( ) ( ( )

m m d m d

m m m m d m d

T
syn obs

T
syn obs )),

	
(6)

where the transpose operator is denoted by the su-
perscript T. A common approximation of the 
Newton method consists of considering only the 
first term of the right side in the expression of 
the Hessian operator (equation 6) and is referred 
to as the Gauss-Newton (GN) approximation. In 
this context, the model update at iteration k is 
the solution of the linear system

	

H C

H J J

GN

GN
T

with( ) ( )

( ) ( ) ( )

m m m

m m m
k k kD = -— ,

= . 	 (7)

This equation can be rewritten in terms of the 
Jacobian operator and the model update only 
through the equation

	
J J JT T

syn obs( ) ( ) ( )( ( ) )m m m m d m dk k k k kD = - - .
	

(8)

This Gauss-Newton approximation (equation 8) 
is important because it reveals that the model 
update at iteration k is computed as the least-
squares solution of the simple linear system

	
J ( ) ( ( ) ),m m d m dk k kD = - -syn obs 	 (9)

which is a locally linearized expression around 
the current model mk and provides a local linear 
link between data perturbation and model per-
turbation. Let us reiterate the alternative: finding 
an approximation of the inverse of the Jacobian 
operator, sometimes named the direct inversion 
formulation, will provide a different strategy 
from that of the least-squares operator −
[ ( ) ( )] ( ).J J JT Tm m mk k k

-1  One can cite the in-
verse Fourier transform or the inverse of the gen-
eralized Radon transform as examples of direct 
inversions (Beylkin, 1985).

One can see that as soon as we have discrete 
data and model spaces, the single scattering for-
mulation for updating the current model relies 
essentially on tools designed from linear algebra. 
Acquisition configuration and initial model 
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design are the two other types of complementary 
information that we need for performing the full 
waveform inversion as a data-driven strategy of 
imaging. In order to obtain a practical evaluation 
of the gradient vector and the Hessian matrix of 
the misfit function C , we must consider the hy-
perbolic partial differential equation for con-
structing the wave solution inside a known me-
dium. This is the forward problem.

Wave propagation
Wave-propagation modeling is an internal 

process of the seismic imaging workflow and 
should be designed with a consideration of the 
optimization we have selected. Here we will ex-
amine forward modeling by itself. We formulate 
it as a time-implicit differential system suitable 
for optimization but also as a time-explicit differ-
ential system suitable for computational purpos-
es. The Earth is a heterogeneous medium with 
attenuation and anisotropic properties, making 
the modeling of wave propagation a challenging 
problem. We will not discuss attenuation in this 
introductory presentation of FWI because addi-
tional attention is required (see the review by 
Yang et  al. (2016) for including attenuation in 
the full waveform context). A consideration of 
anisotropy does not introduce new difficulties 
and, therefore, can be undertaken here. Following 
continuum mechanics, the motion at a point of 
the medium x = (x, y, z) should follow the partial 
differential equation (PDE)

	

r s

s e s

∂ = ∂ +

∂ = ∂ + ∂
t i j ij i

t ij ijkl t kl t ij

v f

c

e

e ,
	

(10)

where the density is denoted by the symbol , 
the i component of the particle velocity by i, the 
ij component of the second-order stress tensor 
by ij, the ijkl component of the fourth-order 
stiffness tensor by cijkl (sometimes called the elas-
tic tensor), and the second-order strain tensor by 
ij. Indices i, j, k, l span the coordinates [x, y, z] (or 
[1, 2, 3], as is often used). Recall that the strain is 
defined by the expression ij = (∂iuj + ∂jui)/2 where 
the i component of the particle displacement is 
denoted by ui. Recall also that all mentioned ten-
sors are symmetrical; the system is conservative. 
The first equation is Newton’s law for dynamics, 
and the second equation is the time derivative of 
the linear Hooke’s law characterizing the elastic 

rheology of the material defined as ij = cijklkl. 
The medium is excited by external forces f e or by 
internal stress  e coming from a local failure of 
the rheology law (explosion or fracture).

We use Voigt indexing, 11 → 1, 22 → 2, 33 → 3, 
23 or 32 → 4, 13 or 31 → 5, 12 or 21 → 6, and we 
define the nine-component vector wt = (vx vy vz σxx 
σyy σzz σyz σxz σxy)T with vx ≡ w1, vy ≡ w2, vz ≡ w3, 
σxx ≡ σ1 = w4, σyy ≡ σ2 = w5, σzz ≡ σ3 = w6, σyz ≡ σ4 = w7, 
σxz ≡ σ5 = w8, σxy ≡ σ6 = w9. Substituting strain by 
particle velocities (the time derivative of displace-
ment), the elastodynamic system can be written 
through scalar notation for each component wI as

	 ∂ = +t I i IJ J i I
ww t w t f( ) ( ) ( )x x, , ,AD 	 (11)

with implicit summation on repeated capital in-
dices from values 1 to 9. The source term fw could 
act on the nine different components. The vec-
tor w is evaluated at the position xi in the dis-
crete mesh used for numerical integration. The 
extended stiffness matrix A has the following 
structure

	
A

B

C
= ¥ ¥

¥ ¥

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

3 3 3 6

6 3 6 6

0

0
,
	

(12)

where the diagonal matrix

	

B =
Ê

Ë

Á
Á

ˆ

¯

˜
˜

b

b

b

0 0

0 0

0 0 	

(13)

introduces buoyancy b, which is the inverse of 
density , and where the stiffness matrix

	

C =

◊
◊ ◊
◊ ◊ ◊

c c c c c c

c c c c c

c c c c

c c

11 12 13 14 15 16
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(14)

is symmetrical. The symmetrical matrix D  con-
tains differential operators with respect to space 
coordinates:

	
D = ¥ ¥

¥ ¥

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

0

0
3 3 3 6

6 3 6 6

D

Dt
	

(15)
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with the rectangular submatrix
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(16)

In matrix form, we have the first-order hyper
bolic system

	 ∂ = +t w
ww B w f 	 (17)

with an impedance matrix Bw, which is now not 
symmetrical (because matrices A and D  do not 
commute), as shown by boxes when considering 
its complete expression for the particular case of 
isotropic media (with Lamé coefficients l  and m)
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(18)

The excitation fw is composed from forces and 
stresses of the system (equation 10). We shall see 
that we need to solve partial differential equations 
defined by the transpose matrix Bw

T , which is real. 
System 10 governing the wave propagation is not 
a self-adjoint differential system. Because the wave 
propagation preserves the total energy in nonat-
tenuating media, we design a self-adjoint system, 
providing the same solution as in system 10.

If we introduce the compliance tensor S, for 
which we shall use Voigt compact notation, we 
consider the following PDE

	

r s

s s

∂ - = ∂

∂ - ∂ = ∂ + ∂ .
t i i j ij

ijkl t ij ijkl t ij k l l k

v f

s s v v

e

e /( ) 2
	

(19)

All spatial partial derivatives have been purpose-
ly written on the right side and, therefore, are 
not intermingled with the properties of the me-
dium. All matrices are now symmetrical and, 
therefore, the energy will be preserved during 
propagation — an important property of wave 
propagation in nonattenuating media. Now we 
understand why system 10 also preserves the en-
ergy, whereas it was not obvious initially. 
Moreover, this separation will be quite helpful 
when we take the derivative of these partial dif-
ferential equations with respect to the medium 
parameters, which are expressed only on the left 
side of these equations. We introduce an extend-
ed mass/compliance matrix M and we write in a 
compact form the symmetrical first-order hyper-
bolic PDE, still using the scalar notation for each 
component

	 M w t M f w tIJ t J i IJ J
w

IK K i∂ , - =( ) ( )x xD , , 	 (20)

where a product of matrices is avoided (Burridge, 
1996). As we shall see, this structure is suitable 
for elaborating on the imaging condition, but 
because it is an implicit system it is not suitable 
for computing wavefields. We prefer to solve 
the first-order hyperbolic system (equation 11) 
by evaluating the time evolution of the wave-
field w from initial values. Let us repeat that the 
system of equation 20 will be the one used for-
mally for seismic image updating, regardless of 
the system selected for computing wavefields. 
These two systems (equations 11 and 20) pro-
vide the same continuum solution. Numerical 
solutions may differ only by numerical errors 
coming from the discretization we assume in 
the numerical algorithm we select; such errors 
will be neglected.

Alternatively, we may eliminate the stress 
components in the first-order hyperbolic system 
(equation 11), leading to a second-order hyper-
bolic system in which the wavefield w is only the 
particle velocity v. We drastically reduce the 
memory requirements of wave-propagation sim-
ulation because the wavefield now only has three 
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components. This system is self-adjoint because 
we have second-order derivatives in space and in 
time. The introduction of the compliance matrix 
illustrates this convenient common property 
shared by first-order and second-order hyperbol-
ic systems. We obtain the system

	
r s∂ = ∂ ∂ + + ∂ .tt i j ijkl l k i j ijv c v f( ) e e

	
(21)

This system must be complemented by the esti-
mation of the strain  or equivalently by the 
stress  because we will need them when consid-
ering derivatives of the PDE with respect to me-
dium parameters for the imaging condition. This 
requirement mitigates partially the memory re-
duction we have identified. We must consider an 
extended system

	

r s

e

∂ = ∂ ∂ + + ∂

∂ = ∂ + ∂ .
tt i j ijkl l k i j ij

t ij i j j i

v c v f

v v

( )

( )

e e

/

,

2
	

(22)

The first line is self-consistent and provides 
the wavefield at each time step. The second line 
of system 22 is required for some of the imaging 
conditions we shall consider in the next section. 
In other words, these additional fields ∂t  (or 
equivalently ∂tσ) are only composed when need-
ed for computing seismic imaging ingredients. 
Their numerical estimation should be integrated 
into the numerical tool of the forward problem, 
whereas that estimation is not included when 
only the wavefield is needed. This alternative 
formulation is attractive for different applica-
tions because it mitigates the memory require-
ment. Of course, with whatever system we select, 
the imaging condition expressed by the gradient 
will be the same quantity.

We can move from time integration to fre-
quency sampling, and in so doing a linear system 
has to be solved with complex arithmetic opera-
tions. Often we prefer to convert the second-
order hyperbolic system in time into a linear dis-
crete system that will be smaller than the one 
deduced from the first-order hyperbolic system. 
Computer resource needs are reduced for solving 
the linear system either through a direct solver 
technique based on sparse matrix-vector manipu-
lation (MUMPS team, 2011) or through an itera-
tive solver technique (Plessix, 2007). The direct 
solver technique is quite appealing when consid-
ering many sources, but the memory require-
ment is high. Recently improved approaches 

have broadened the domain of applications be-
cause memory requirements have been reduced 
and scalability has been dramatically improved 
(Amestoy et al., 2015). Iterative solver techniques 
have been found to be efficient strategies for the 
acoustic case (Plessix, 2007; Riyanti et al., 2007; 
Erlangga and Nabben, 2009; Neklyudov et  al., 
2014) but the elastic case is still an open question 
(Gosselin-Cliche and Giroux, 2014; Li et al., 2015).

Currently, the optimal strategy is unclear — 
whether we should consider frequency formula-
tion or time formulation for the forward prob-
lem. The frequency formulation could include 
attenuation without any extra cost, whereas in-
corporating attenuation is more tedious in the 
time formulation. On the other hand, selecting 
data is easier in the time domain than in the fre-
quency domain. We must wait for numerical in-
vestigations by other groups to identify cases 
when one option is superior to the other one; we 
expect that the choice will be case-dependent 
and could change during the imaging process. 
Until now, from a practical point of view, most 
implementations of FWI have been performed in 
the time domain because multiple frequency 
contents could be considered simultaneously, 
which is important when dealing with reflection 
phases.

Seismic imaging ingredients
This section is technical, and a demonstration 

of the results are presented in the Appendix. The 
most obvious strategy for minimizing the misfit 
function uses the estimation of Fréchet deriva-
tives; that is, it uses the data derivative with re-
spect to the model parameter, also called the sen-
sitivity matrix, which has a dimensional com-
plexity related to the dimension of the data space 
multiplied by the dimension of the model space. 
The related system of equation 9 is solved in the 
least-squares sense, leading to the system of equa-
tion 5, which is solved by different techniques, 
such as the conjugate gradient promoted, for ex-
ample, by the least-squares (LSQR) algorithm 
(Paige and Saunders, 1982). When looking at the 
system of equation 5, one can see that the local 
minimization of the misfit function will need 
only the estimation of its gradient vector with a 
model complexity (i.e., the number of degrees of 
freedom of the model), and sometimes an esti-
mate of its Hessian matrix with a model-square 
complexity (the square of the number of the de-
grees of freedom), independent of the dimension 
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of the data space in equation 5. The estimate of 
the sensitivity matrix is not strictly required, even 
though it will yield significant information for 
fine-tuning the optimization provided we can af-
ford the expense of estimation and storage. We 
do not need to evaluate the Fréchet derivatives in 
order to update the model; this is the adjoint for-
mulation (see Chavent, 1974; Tromp et al., 2005; 
Plessix, 2006b; Chavent, 2009, for reviews), 
which is described in more detail in the Appendix. 
Here we only describe the final expressions. Let 
us write this misfit function again,

C( ) ( ) ( )m d x x d x x

x x

m= -ÈÎ ˘̊

¥

Ú Ú Ú∂ ∂

1
2 0

2T
t t

d d

w

s r

syn s r obs s r

r

W W
, , , ,

ssdt , 	(23)

with the relation between synthetic data and 
computed wavefields given by the expression

	
d x x w x xm m

syn s r r s( ) ( ), , , , ,t R t=
	

(24)

where we define the operator Rr as the projection 
of the wavefield vector wm onto data components 
at receiver positions. In a discrete world, this op-
erator is a rectangular matrix. The vector wm must 
satisfy the system of equation 20, which is ex-
pressed in time. We, therefore, have two equality 
constraints, one derived from the projection of 
the wavefield onto the recorded data at receivers 
and the other one from the wave equation verified 
by the wavefield. In mathematical optimization, 
the method of Lagrange multipliers is the mathe-
matical tool for performing such a minimization 
under constraints. This leads us to introduce two 
new vectors. The first, λm, has the same number of 
components as the wavefield vector wm, whereas 
the second, μm, has the same number of compo-
nents as the data vector dm

syn and is simply con-
nected to the projector Rr. The first vector is called 
the adjoint wavefield associated with one source xs 
and should verify the partial differential system

M t

R d t d t

IJ t J s

I

IK

∂

- ÈÎ ˘̊

=

Â
l ( )

( ) ( )

x x

x x x xm

, ,

, , , ,
r

r
T

syn s r obs s r−

D (( ) ( )— lK tx xs , , , 	 (25)

which turns out to be identical to the implicit 
system of the wave propagation (equation 20). 
The sum is over receivers related to the selected 
source. The source term of this adjoint system 

defines this adjoint wavefield and comes from in-
serting the projection Rr

T of data residuals back 
into the modeling discrete grid. We send back 
into the medium unexplained features of the 
data in order to locate possible zones of contribu-
tion inside the medium. The conditions on this 
adjoint wavefield will be final conditions, because 
λ (x, Tw) = 0. We deduce an explicit system

∂ =

+ -Â
t I IJ J

IK K

t t

A R d t d

l l( ) ( ) ( )

( )

x x A x x

x xm

s s

r
r
T

syn s r obs

, , , ,

, ,

D

(( )x xs r, , ,t( )
	

(26)

identical to equation 11, in which only the source 
term has been modified, thereby introducing me-
dium properties at receivers. Note that the adjoint 
source will simultaneously return all of the residu-
als for one source. This system can be integrated 
back in time to the time of origin. Incident and 
adjoint wavefields are not obtained simultaneous-
ly. Although we do not consider attenuation in 
this presentation, let us note, to avoid confusion, 
that this adjoint system is still stable when attenu-
ation is included. The attenuation effect is an am-
plitude decrease during the backward integration 
of the adjoint wavefield and does not provide any 
amplitude increase (Tarantola, 1988). Having the 
incident wavefield be at the same time as the ad-
joint wavefield is required for crosscorrelation, in 
order to build up the gradient. Many methods ex-
ist for making the incident wavefield available for 
crosscorrelation, such as saving the incident field 
during the forward computation with efficient 
compression and disk storage through efficient in-
put/output strategies (Sun and Fu, 2013; Prabhat 
and Koziol, 2014). Alternatively, during the inte-
gration of the adjoint wavefield backward in time, 
one may recompute the incident wavefield either 
by using time reversal integration (Clapp, 2008; 
Dussaud et al., 2008; Brossier et al., 2014), or by 
using optimal checkpoint strategies based on re-
peated time forward integration (Griewank, 1992; 
Griewank and Walther, 2000; Symes, 2007; 
Anderson et al., 2012). We may deduce the gradi-
ent of the misfit function as

	

∂
∂ = ∂

∂
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ÂÚC
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The sum is over sources.
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In the frequency domain, monochromatic 
wavefields are stationary fields distributed inside 
the medium; they have amplitude and phase be-
cause they are complex. We consider one source 
from which we have a monochromatic concen-
tric wavefield because we are working with a 
homogeneous medium. We have the same con-
centric shape of the wavefield from the receiver 
corresponding to the adjoint field. Figure 5 is the 
product of these two wavefields, which is the in-
terference at a given frequency in a homoge-
neous medium. This interference is the gradient 
contribution for one pair (source, receiver), and 
it displays where we should update the model in 
order to explain what is observed and not ex-
plained at the receiver. This is sometimes called 
the sensitivity kernel. In the first Fresnel zone, 
primarily sampled by direct waves, waves pro-
vide a potential contribution for updating the 
medium with an expected smooth resolution 
(Woodward, 1992), whereas outer interference 
fringes, mainly sampled by reflected waves, yield 
a zone with an expected high resolution. The lo-
cation of this zone strongly depends on the cur-
rent model we are considering. The first Fresnel 
zone depends on the acquisition geometry and 
more weakly on the model, whereas the outer 
fringe is highly dependent on the model and 
does not depend on the acquisition. Estimating 
model perturbation inside the first Fresnel zone 
will fill in the low-wavenumber part of the me-
dium because we are not able to discriminate be-
tween contributions of the different points of 
this zone. On the contrary, when we start the 

optimization, the initial model should be accu-
rate enough to locate the outer fringe at nearly 
the right place, as we shall discuss in the section 
concerning the initial model definition. If we 
misposition this outer fringe, we shall construct 
a high-wavenumber content at an incorrect 
place and it will be very difficult to remove it 
through later iterations. This is a complemen-
tary interpretation of the cycle-skipping issue 
expressed in the oscillatory time signals. 
Counting fringes from the first Fresnel zone 
without missing one could be performed with-
out an initial model, a counting nearly impos-
sible to achieve with seismic acquisition. In 
seismics and in seismology, we rely on the ini-
tial model design and we avoid such counting. 
We put the fringe at nearly the right place with 
the help of a good initial model. We say that the 
initial model is kinematically compatible.

Away from sources, the gradient of the misfit 
function is the zero-lag crosscorrelation between 
the adjoint wavefield and the time derivative of 
the incident wavefield, which is multiplied by a 
local scattering operator. Note that there are no 
explicit spatial derivatives in this estimation of 
the gradient based on the first-order hyperbolic 
system (velocity-stress):

∂
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∂ ∂Â ÚC
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where we have omitted the dependence of the 
incident and adjoint wavefields with respect to 
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Figure 5.  Misfit function gradient when considering a homogeneous background medium and 
monochromatic incident and adjoint fields; the zero-lag crosscorrelation between these two fields highlights 
two different contributions. The central ellipse represents the first Fresnel zone, where phase time does not 
differ by more than half a period with respect to the direct arrival. The outer fringes represent migration 
isochrones whose width decreases with depth according to the scattering angle.
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the source. Using the density and the compli-
ance components, we can write
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with implicit summation over capital indices. 
The 6 × 6 matrix ∂S/∂Skl for each component Skl 
is composed with elements of values zero or 
one. We have split the nine-component adjoint 
wavefield λ into the three-component adjoint 
wavefield λv related to particle velocity and into 
the six-component adjoint wavefield λ related 
to stress. The physical interpretation of the gra-
dient contribution based on displacement and 
stress components should rely on expressions 
29, in which the scattering matrix is explicitly 
identified. An equivalent formulation could be 
written using stiffness components and is wide-
ly used in seismology, where wave-propagation 
modeling is performed with a second-order hy-
perbolic system (displacement) (Liu and Tromp, 
2006).

The gradient estimation is required for updat-
ing the model, whereas we can avoid estimation 
of the inverse of the Hessian matrix when solv-
ing the Newton equation (equation 5). Omitting 
this estimation will decrease drastically the prob-
lem complexity. Most algorithms of FWI are es-
sentially based on gradient estimations, such as 
the steepest-descent method or the conjugate-
gradient method, although in recent investiga-
tions the impact of the Hessian matrix is increas-
ingly being taken into consideration. An efficient 
way of evaluating its influence is through the 
quasi-Newton method, for which limited storage 
has been promoted by Nocedal and Wright 
(2006). This approach only requires a small num-
ber (roughly 10 or 20) of stored gradients and 
models for approximate estimations of the im-
pact of the Hessian matrix.

In the future, we may need to go one step 
farther and consider the full Newton method, 
which will require estimation of the product of 
the Hessian matrix with any model vector — a 
key ingredient of a conjugate-gradient method 
for solving this Newton equation. An efficient 
way to estimate that product is through the so-
called second-order adjoint formulation, which 

will not be described here. Instead, the reader is 
referred to the article by Métivier et al. (2014) in 
which a matrix-free approach is presented. This 
approach will allow efficient estimation of the 
influence of the Hessian matrix, which will be 
important for mitigating any acquisition defi-
cit, for improving the convergence rate, and for 
reducing the tradeoff between parameters. 
Because we never estimate the inverse of the 
Hessian matrix, we cannot provide any infor-
mation on resolution and uncertainty of the 
seismic image — an analysis that we consider in 
the next section.

An extensive description of the impact of the 
Hessian matrix will be provided when multiple 
parameter imaging is considered.

In the frequency domain, the expression of 
the misfit gradient vector is composed of three 
terms: the incident and adjoint wavefields and 
the scattering matrix. At the point i in the mesh 
for the model parameter ml, the gradient is
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where w(x, ) are conjugate residual vectors be-
cause we are now working in a complex space 
(Virieux and Operto, 2009) and the circular fre-
quency is expressed by . The imaginary number 
is denoted by i = -1. Implicit summation is 
considered on repeated capital indices.

Finally, let us mention that we also may need 
to estimate the source time signal. The deconvo-
lution of the source wavelet is a simple operation 
in the frequency domain (Pratt, 1999) and a 
slightly more complex one in the time domain. 
The main point is the selection of the data time 
window for performing the deconvolution. We 
may select near-field data, far-field data, or 
ocean-bottom reflection data. Once this prelimi-
nary source wavelet is built, we will use anticaus-
al mute and/or band-pass filtering for finalizing 
our estimation of the source wavelet. Readers in-
terested in source extraction also can consult the 
article by Plessix and Cao (2011), who discuss us-
ing an adjoint formulation. That could be done 
for each source and at each iteration, if needed. 
We may assume that it should be done once at 
the beginning and could be the same for all 
sources. These different strategies are applica-
tion-dependent.
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Resolution analysis and formal 
uncertainty estimation

Although the relation between seismic data 
and medium properties is essentially nonlinear, 
we can expand the misfit function around the 
expected global-minimum model �m. The misfit 
function has a Taylor expansion
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reducing to a quadratic expansion form
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t
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at the minimum we have reached by zeroing the 
gradient vector —C( )�m . There is no guarantee 
that it will be a minimum and more specifically 
the global minimum we are seeking. At the 
current local minimum, the Hessian matrix 
should have real positive eigenvalues with some 
of them near or equal to zero. We always try to 
mitigate the influences of these small eigenval-
ues during the optimization procedure. We shall 
assume Gaussian statistics, a basic hypothesis in 
the framework of the Bayesian formulation 
(Tarantola, 1987). From the Taylor expansion 
(equation 32), the probability density

	 pd e
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expresses the statistical distribution of possible 
models. Let us repeat that the gradient vector is 
zero at the minimum and, therefore, is not in 
the probability density function when ex-
pressed at the minimum. We assume that seis-
mic traces are not correlated and are of the 
same quality. Moreover, let us assume that the 
statistics on the data are Gaussian and the units 
are normalized, giving us a data variance of one 
for each data value. Assuming that we have 
reached the global minimum, the Hessian ma-
trix is the inverse of the posterior covariance 
matrix evaluated at the minimum �m and, 
therefore, it will include the information for 
formal resolution and uncertainties as well as 
tradeoffs (Fichtner and Trampert, 2011). Using 
a singular value decomposition (SVD) of the 
Hessian matrix, we may deduce that the 

probability density will be the product of the 
probability densities for each model parameter: 
a rather simple Bayesian structure that is of lim-
ited validity in practical applications for a reli-
able uncertainty estimation.

Probing the structure of the inverse of the 
Hessian matrix will provide a resolution analysis 
as well as an uncertainty estimation, but that is 
not an easy task because the Hessian matrix has 
a complexity that increases as the square of the 
model complexity. The recursive expression of 
the inverse of the Hessian for the limited-mem-
ory Broyden-Fletcher-Godlfarb-Shanno (BFGS) 
algorithm will allow a discrete estimation of res-
olution and uncertainty under the quadratic 
approximation. Of course, we have to store or 
compress the Hessian matrix, which has mainly 
a block-band-diagonal structure, because neigh-
boring points should interact whereas far-apart 
points are less expected to interact. Another ap-
proach will be through the second-order adjoint 
formulation with matrix-free operations. At the 
minimum, we perturb the gradient at the posi-
tion in which we are interested, and we solve the 
restricted Newton equation with the gradient 
restriction at the selected position. The resulting 
model vector will provide the resolution and un-
certainty around the selected position.

Another numerical alternative comes from 
the low-rank approximation of the Hessian 
matrix, which is supposed to have a pseudo-
differential structure inducing a sparse shape of 
this matrix. Therefore, through randomized sam-
pling, one can probe the most dominant eigen-
value components of the Hessian matrix itself 
(Candes and Demanet, 2005; Demanet et  al., 
2012), leading to fair approximations of the 
Hessian matrix (Herrmann, 2010; Fang et  al., 
2014). We are still operating under the quadratic 
assumption.

Because the true misfit function differs from a 
quadratic shape, we can introduce the resolution 
matrix

	
�m x x x m x( ) ( ) ( )= ¢ ¢ .R , 	 (34)

Ideally, the desired resolution matrix R should 
be the identity. We expect not to be too far away 
from a diagonal structure and, therefore, we 
expect interaction only between neighboring ele-
ments. This will lead to a low-rank approximation, 
in which the complexity of the matrix R will be 
k nO( ), where the integer k defines the halo 
around the current parameter when the model 
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is characterized by n degrees of freedom. Numerical 
probing comes with a finite small perturbation 
mj of one parameter j away from the minimum 
�m. Synthetic data at the new model will differ 

from synthetic data at the minimum and, there-
fore, could be used for a model reconstruction 
that provides an estimated perturbation d i�m  of 
parameters with the same expected  resolution 
matrix defined at the minimum. We build numer-
ically one line of the resolution matrix

	
Rij
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j

m
m

= d
d
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and we may proceed with another perturbation j 
over positions and parameter classes, provided 
we can store the matrix. We have the capacity of 
computing the spread function SPREAD( )R =  
� �R - I 2 over the medium. The SPREAD function 
is a compact quantity for quality control of 
probed zones of the medium. Moreover, we 
can  estimate the probability density as well as 
tradeoffs between parameters. We may quantify 
somehow the trustworthiness of the formal un-
certainty and resolution by finding the Gaussian 
distribution of d �m for the specified initial per-
turbation mj. Of course, we may sample this 
resolution matrix coarsely, especially on regions 
of interest.

The difficulties encountered with sampling 
the Hessian matrix accurately, and the question 
of how accurate the quadratic approximation is 
when considering high-dimensional spaces, lead 
to cautiousness in promoting these formal quan-
tities. The FWI is a rather deterministic approach 
providing the “best” model at a given level with-
out providing insight on quantified resolution 
and uncertainty. In the future, a more sophisti-
cated sampling strategy based on ensemble 
methods (Evensen, 2009) could provide more-
quantitative assessments of resolution and un-
certainty. Such a strategy would require signifi-
cant computer resources.

An example of a real application
Real applications of FWI have been success-

fully achieved on various seismic data sets. 
Currently, FWI is implemented mostly in the 
time domain because a wide range of applica-
tions with various survey sizes and different ac-
quisition geometries can be investigated, in 
both exploration seismics and seismology (e.g., 
Komatitsch et  al., 2002; Vigh and Starr, 2008; 

Mulder and Plessix, 2008; Krebs et  al., 2009; 
Plessix and Perkins, 2010; Sirgue et  al., 2010; 
Routh et  al., 2011; Peter et  al., 2011; Plessix 
et al., 2012; Bansal et al., 2013; Vigh et al., 2013; 
Fichtner et al., 2013; Schiemenz and Igel, 2013; 
Warner et al., 2013a; Zhu et al., 2015). Such ap-
plications are generally quite demanding on 
computational resources. We would like to fo-
cus on a specific environment where the FWI 
has been demonstrated to perform quite well 
both in the frequency domain (Operto et  al., 
2015) and in the time domain (Warner et  al., 
2013a).

A marine environment for characterizing 
reservoirs below sedimentary layers using 
permanent ocean bottom cables (OBC) or nodes 
provides a good configuration for FWI applications. 
There is a high density of sources and the recording 
at the sea bottom provides four-component data. 
We shall illustrate FWI high-resolution imaging 
on a real OBC data set from the North Sea (Operto 
et  al., 2015). This acquisition is a fixed-spread 
with wide-azimuth configuration. For this 
illustration, the forward modeling is a 3D 
viscoacoustic vertical-axis transverse isotropy 
(VTI) finite-difference simulation in the frequency 
domain (Operto et  al., 2014). Only the vertical 
velocity is reconstructed. Four-component OBC 
acquisition comprises ~2300 receivers and 
~50,000 shots in the Valhall oil field (Barkved and 
Heavey, 2003). Only the hydrophone component 
is taken into account here, because we consider 
just the acoustic approximation. The acquisition 
layout covers an area of 145 km2 and the 
maximum depth of the subsurface model is 
4.5 km. Data are inverted in the 3.5- to 10-Hz 
frequency band.

Warner et  al. (2013a) processed successfully 
a  similar data set in the same kind of environ-
ment using a time approach. In addition to other 
substantiating evidence, high-quality images 
have also been obtained and give us further con-
fidence in the usefulness of FWI. Readers inter-
ested in an extensive discussion of the FWI ap-
plication in the Valhall oil field should consult 
the paper by Operto et al. (2015). Here we pro-
vide a brief discussion of the image improve-
ments achieved by fitting the whole content of 
seismograms.

We need to start from an initial model. A ver-
tical-velocity model and Thomsen’s parameter 
models were built by reflection traveltime to-
mography and were provided to us (courtesy of 
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BP). A density model is built from the initial ver-
tical-velocity model by using Gardner’s law, and 
it is kept fixed over at least ten iterations. 
Thomsen’s parameters are also kept fixed. A ho-
mogeneous model of the quality factor is used 
below the sea bottom, with a value of Q = 200. 
Starting from this initial model, we sequentially 
invert the vertical velocity for 11 frequencies, be-
ginning with 3.5 Hz and ending with 10 Hz. We 
have adapted the finite-difference grid to each 
frequency. Note that the final grid size of 35 m 
accurately matches the sea bottom at a depth of 
70 m. We compare horizontal slices at three dif-
ferent depths: 175 m (Figure 6a and 6d), 500 m 
(Figure 6b and 6e), and 1000 m (Figure 6c and 
6f ) in the initial tomographic velocity model 
and in the final FWI model.

In Figure 6d, one can see an improved recon-
struction of paleochannels stored in the superficial 
sedimentary layer, as well as the imprints of gla-
ciers sliding over the bedrock in Figure 6e. Both of 
these features are difficult to see in the tomograph-
ic images. The gas cloud is identified in the tomo-
graphic image (Figure 6c), but the reconstruction 
in Figure 6f by the FWI gives an unprecedented 
sharpness of contours, because of the broadband 
resolution we achieved. We conclude that the 
resolution has been significantly improved by 
FWI compared with that from traveltime tomog-
raphy.

Comparing seismograms of real and synthetic 
data also illustrates the capacity of FWI to extract 
more information (Figure 7). Synthetic seismo-
grams in time, computed by a time forward 

Distance (km)

D
is

ta
nc

e 
(k

m
)

D
is

ta
nc

e 
(k

m
)

D
is

ta
nc

e 
(k

m
)

3

3
a)

b)

c)

d)

e)

f)

4

5

6

7

8

9

10

11
3

4

5

6

7

8

9

10

11

3

4

5

6

7

8

9

10

11

3

4

5

6

7

8

9

10

11
3

4

5

6

7

8

9

10

11

3

4

5

6

7

8

9

10

11

5 7 9 11 13 15 17
Distance (km)

m/s

m/s

m/s

1700

1700

1800

1900

2000

1700

1800

1900

2000

2100

2200

1750

1800

1850

1900

1950

3 5 7 9 11 13 15 17
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modeling, show improved agreement with real 
seismograms, highlighting the efficient extrac-
tion of information that FWI has achieved. Let 
us point out the slightly different amplitudes for 
reflection phases in this figure, which might sug-
gest that density or impedance should be intro-
duced and should direct us toward multiparam-
eter inversion.

The high-resolution reconstruction with FWI 
is linked to its significant sensitivity to the initial 
model, which should be carefully designed. We 
discuss the cycle-skipping issue in the next sec-
tion and explain that we cannot escape the fun-
damental ambiguity related to local minima 
when considering local minimization strategies. 
We must introduce some prior information that 
could be pertinent for the seismic data we con-
sider, but we cannot guarantee that it will work 
as desired for any specific data sets.

Cycle skipping and initial model design
Cycle skipping in FWI originates from the os-

cillatory nature of seismic data. Counting wrig-
gles from the source is impossible, taking into 
account the seismic data acquisition protocol. 
We may rely on velocity structures for predict-
ing, with a time accuracy below half of the signal 
period, where the synthetic wriggle should be 
relative to the data wriggle in the time recording. 
If the initial velocity is not accurate enough, 
we face a cycle-skipping ambiguity and we may 
be trapped into a local minimum during the 

optimization procedure by attempting to fit the 
wrong wriggle. This is especially true when the 
misfit function is the �2 norm and we are com-
paring a data sample and a synthetic sample of a 
given record.

Therefore, we should rely on robust meth-
ods such as traveltime tomography for con-
structing initial models. Because traveltimes 
and phases for dispersive waves are robust ob-
servables, we should rely on them as long as we 
are able to extract them from seismograms be-
cause they are separable. Phase picking, the 
most challenging step of initial velocity recon-
struction, can be performed in the data domain 
or in the image domain (Lambaré, 2008). The 
resulting pickings are interpreted during the re-
lated inversion procedure, which is far less dif-
ficult and intensive than the one for FWI. 
Strong and expert human inputs are required 
for driving the volumetric picking (threshold, 
cleaning, and peeling off the observables) and 
for specifying the identification and the inter-
pretation of the analyzed phase. Even if the 
inversion is less non-linear, we need various 
penalty strategies in this tomographic inver-
sion step of the velocity model construction. 
Note the significant humantime consumption 
in this workflow.

Two other strategies, based on more autono-
mous workflows, have emerged for overcoming 
the issue of cycle skipping. They are based primarily 
on misfit-function designs and/or model-space 
definitions.
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The data domain strategy is mainly driven by 
the design of more robust objective functions 
that operate essentially by mitigating the oscilla-
tions of the seismic signal. Phase-only approach-
es have been investigated by Bednar et al. (2007), 
whereas analysis of the envelope has been sug-
gested by Bŏzdag et  al. (2011), and analysis of 
the  instantaneous phase has been proposed by 
Maggi et  al. (2009) and Lee and Chen (2013). 
Unwrapping or dynamic warping (Choi and 
Alkhalifah, 2011; Alkhalifah and Choi, 2012; Ma 
and Hale, 2013; Perrone et al., 2015) is another 
way of comparing signals. Crosscorrelation (Luo 
and Schuster, 1991; Tromp  et  al., 2005; van 
Leeuwen and Mulder, 2010) is natural, and zero-
lag crosscorrelations (Routh et al., 2011) are also 
time series operations that mitigate amplitude-
variations. Finally, deconvolution also reduces 
oscillations and is promoted by Luo and Sava 
(2011) and Warner and Guasch (2014), whereas 
integration, as another oscillation reduction 
tool, has been proposed by Donno et al. (2013). 
Finally, let us mention optimal transport as a 
new way of comparing seismic signals or gathers 
(Engquist and Froese, 2014; Métivier et al., 2016a, 
b). These different techniques modify the misfit 
function and require further investigation, espe-
cially when considering complex media; some 
limitations are expected and determining where 
these techniques perform efficiently will require 
further work.

The other strategy for the misfit-function 
design is an unphysical extension of the model 
domain in order to mitigate any errors or biases 
resulting from the model description. Introducing 
subsurface offsets and time-shifts is a method for 
relaxing imaging conditions because the model 
is not yet built correctly and prevents focusing of 
the incident and adjoint fields at the point of 
interest (Symes, 2008; Rickett and Sava, 2002; 
Sava and Vasconcelos, 2009; Biondi and 
Almomin, 2012; Almomin and Biondi, 2012; 
Biondi and Almomin, 2013, 2014). Alternatively, 
constrained optimization based on a penalty 
strategy will extend the model domain by inte-
grating wavefields as components of the model 
space. Consequently, the wave equation is not 
required to be verified exactly by wavefields at 
each iteration. We update iteratively both the 
wavefields (for verifying the wave equation) and 
model parameters (for fitting the data) (van 
Leeuwen and Herrmann, 2013).

Whatever the misfit-function strategies are, 
they will introduce prior knowledge regarding 
how to interpret different phases and, therefore, 
a specific investigation should be performed to 
better understand that prior information. Often, 
these guided strategies will not identify clearly 
what are the assumptions enabling phase separa-
bility, phase identification, and phase interpreta-
tion.

In this article on FWI, we do not want to delve 
into strategies that would involve new concepts. 
But, one strategy complements the description 
of FWI we have presented. We will describe it 
and detail its relation to previous strategies 
(Chavent and Jacewitz, 1995; Plessix et al., 1999; 
Clément et  al., 2001), sometimes in a broader 
context such as that of differential waveforms 
(Symes and Kern, 1994; Chauris and Plessix, 
2012). We are convinced that this strategy, by 
mitigating inherent difficulties of FWI, will im-
prove the reader’s understanding of how FWI 
really works.

The primary contribution to the FWI gradient 
vector should come from the first Fresnel zone 
contribution (the so-called forward scattering) — 
essentially, from direct/diving waves. We should 
avoid the contribution from backward scatter-
ing, which requires a quite accurate velocity me-
dium. During the hierarchical analysis of the 
seismic data, we have shown that other phases, 
such as reflections, provide forward-scattering 
information that is similar to information from 
direct phases. We should be able to distinguish 
this forward scattering from the backward scat-
tering contribution of these reflected phases. 
Separation of these contributions also has been 
promoted by Snieder et  al. (1989), Staal and 
Verschuur (2013), and Berkhout (2014), by using 
specific forward modeling. A new model descrip-
tion should be introduced by considering sharp 
contrasts of model parameters inside the volume 
to be imaged: we return to prior scale informa-
tion assumed in basic methods of seismic imag-
ing. We lose the unique concept of the single 
scattering formulation (the central hypothesis of 
FWI) for the interpretation of all phases, what-
ever they are. In this new formulation, we are 
back to smooth probing of the medium by waves, 
as assumed by traveltime tomography. The fun-
damental difference here is that picking is not 
required and the phase analysis is progressively 
updated.
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To illustrate this strategy, we consider only 
acoustic propagation and leave the extension to 
the elastic case for future work. Readers interest-
ed in details can find them in Zhou et al. (2015). 
The sharp-constrast description m performed 
through the P-wave impedance parameter, de-
noted by IHp, will absorb backward scattering, 
whereas the pixel velocity description m, denot-
ed by VLp, will take into account only the infor-
mation brought by the forward scattering. Note 
that the impedance parameter is still pixelized 
along a line. In other words, this new model de-
scription is linked to a separation between for-
ward and backward scatterings — a dramatically 
different strategy compared with the one driving 
the standard FWI. Splitting the forward and 
backward scatterings in a reflection phase comes 
with a new description of the medium, in which 
we consider the forward scattering as a reflection 
on its travel down to the interface and back up to 
the receiver. This is true also for diffractions and 
more-complex phases. This contribution is add-
ed to the one resulting from direct/diving waves. 
The gradient related to this smooth updating of 
the model VLp is shown in Figure 8. It will con-
tain essentially first Fresnel zones and, therefore, 
a low-wavenumber description of the velocity 
corresponding to smooth information. High-
wavenumber content has mostly disappeared 
and is mitigated by selecting the impedance as 
the complementary parameter for absorbing this 
high-wavenumber content. This approach is the 
so-called joint full waveform inversion (JFWI) 
(Zhou et al., 2015).

We shall proceed in two steps, following alter-
native strategies promoted recently by Berkhout 
(2014). We begin with the buildup of the imped-
ance IHp, starting from a rather simple initial 
model p

0VL  using the misfit function

	
C( ) ( )p obs

refl
pred
refl

p pIH VL IH= -( )1
2 2

2
0W d dr , ,

	
(36)

in which we have selected just near-zero-offset 
data dobs

refl  that provide only migration iso-
chrones to be compared with synthetic data 
dpred

refl . Typically, the range of offsets from the 
source will be several hundred meters. We con-
duct the inversion through a small number of 
iterations because we are essentially interested 
in the impedance contrast. Once the impedance 
has been evaluated, we proceed in minimization 

of the velocity VLp by using the new misfit 
function
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in which we have made a rather rough separa-
tion between diving waves and reflected waves. 
The previously recovered impedance IHp is kept 
fixed during this inversion step. Now we consid-
er a broad range of offsets for the VLp reconstruc-
tion and keep the impedance description fixed. 
This reconstruction provides a new smooth VLp 
model. Therefore, we can update the impedance 
in this new VLp model, and so on.

Figure 9 shows the true model, composed of 
a velocity structure Vp and an impedance struc-
ture Ip that we want to reconstruct, as well as 
the rather simple 1D medium we use for start-
ing the  inversion cycle in order to obtain the 
high-wavenumber impedance IHp and the low-
wavenumber velocity VLp. After this cycle is 
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repeated approximately 20 times, as shown in 
Figure 10, the result is a reconstruction of the 
impedance IHp that has a strong high-wave-
number content. The reconstruction of the ve-
locity VLp has a low-wavenumber content that 
benefits from diving and reflected phases. This 
smooth velocity structure could be used as the 
initial velocity model in the standard full wave-
form inversion for an improved velocity recon-
struction, assuming a simple density model as 
shown in Figure 11.

This workflow relies on a simple modification 
of the misfit function and assumes a rough phase 
separation between mostly horizontal propaga-
tion of diving waves and mostly vertical propa-
gation of reflected waves. In the JFWI workflow, 
we have purposely mitigated any high-
wavenumber content in the velocity reconstruc-
tion, because we chose the impedance parame-
ter, which can absorb the high-wavenumber 
component of the reconstruction. By doing so, 
we have avoided the strong requirement of an 
accurate initial model when we are considering 
reflections in their reflection regime. Updating 
the impedance by considering near-zero offsets 
affects the high-wavenumber content again and 
puts it at the right place in the new smooth ve-
locity model. For the computational aspect of 
such an approach, the cost is simply for the JFWI 
part of the whole cycle to be twice the standard 
FWI cost. The impedance portion should be con-
sidered as well and turns out to be fast because 
few iterations are required for constructing the 
new impedance model through a kind of least-
squares migration.

Regularization and prior constraints
Sometimes we have a good understanding of 

what we expect as reconstructed models, either 
because we have other information such as sonic 
logs, stratigraphic data, or geologic constraints or 
because we have other remote-sensing approach-
es such as gravimetry or electromagnetic pros-
pecting. Taking these other approaches into ac-
count in the inversion process will ensure robust 
and consistent results (Tikhonov and Arsenin, 
1977). We may consider integrating into the mis-
fit function such prior information either by pre-
conditioning the data gradient that reduces the 
model description (Fomel and Claerbout, 2003; 
Guitton et al., 2012) or by adding a model term 
in the misfit function (Asnaashari et  al., 2013). 
Both approaches are pertinent and complement 
nicely the purely data-driven strategy often ap-
plied for the FWI.

We shall now describe the model-driven as-
pect of the FWI. (Asnaashari et al., 2013), because 
recent investigations of the FWI workflow have 
focused more on the data-driven aspect and have 
neglected the model strategy. The new misfit 
function will be defined by the expression

	
C C C C( ) ( ) ( ) ( )m m m m= + +d m m

l l1 1 2 2 ,
	 (38)

where the Tikhonov term is denoted by C1m
( )m  

for inversion robustness and the prior model 
misfit term is denoted by C2m

( )m . The previous 
data misfit function is Cd. Two regularization 
hyperparameters λ1 and λ2 are introduced, to 
allow weighting of the penalty terms with 
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respect to each other and to the data term. They 
have to be estimated either theoretically or nu-
merically. Let us express these three terms in a 
more explicit way for the particular case of �2 
norms. The data term is the one we have con-
sidered previously. The second term of the mis-
fit function is the Tikhonov term and can be 
written as
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where Bx and Bz are the first-order spatial deriva-
tive operator matrices with respect to x and z, 
respectively. In practice, they can be reduced to 
the second-order Laplacian operator D. We use a 
classical five-point finite-difference stencil to im-
plement the operator D, which provides a con-
nection between neighboring points. The third 
term of the misfit function is related to the prior 
model mprior, which can be designed from differ-
ent information and could be set prior to the 
seismic inversion, but which also could be adapt-
ed iteratively during the inversion procedure. 
This so-called prior model norm term is comput-
ed using the expression
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where the matrix Wm is a weighting operator on 
the model space. This weighting operator has a 
dimensional complexity that is the square of the 
model complexity, as does the one for the Hessian 
matrix. This matrix also can be seen to be the in-
verse of the square root of the covariance matrix 
of the model and contains prior uncertainty in-
formation on the model parameters. Only diago-
nal structures of the Wm matrix, diag( )W Wm

T
m =  

1 2/s ( )m , are considered here, although off-diago-
nal terms should play an important role. The 
prior weighting model σ 2(m) contains both the 
prior model uncertainty (the variance) and an 
acquisition-correction function, which is to be 
designed.

Note that the model term of the misfit func-
tion is dimensionless, because of the introduction 

of the matrix Wm. Hyperparameters λ1 and λ2 ab-
sorb data and Tikhonov dimension issues. The to-
tal gradient has a data component, coming from 
the data misfit Cd and evaluated by the adjoint 
method, and a model component, coming from 
the model misfit C C1 2m m

+ , which yields

	
g l lmodel m

T
m p= + -1 2Dm W W m m( ),

	
(41)

an expression that is numerically straightforward 
to evaluate. When we are considering a model 
term of the misfit function, three difficulties 
arise: the definition of the prior model, the con-
struction of the weighting function, and the 
computation of its inverse, which is the covari-
ance. Because we consider only a diagonal ma-
trix in this introduction, the inverse will be effi-
ciently computed. To a lesser extent, estimation 
of hyperparameters adds an additional complex-
ity, although numerical experiences provide rea-
sonable values quite rapidly for most common 
configurations.

Let us consider a synthetic example with two 
gas-sand traps in a model for which the acquisi-
tion is deployed at the free surface as well as in 
wells (Figure 12). As shown in the figure, the ini-
tial model is a smooth version of the true model 
such that first-arrival waveforms are well fitted. 
We have assumed perfect knowledge of the 
source wavelet in order to emphasize the prior 
model component in this illustration. For real 
applications, many effects will contribute and 
will require skillful strategies. The prior model is 
a simple linear interpolation between the two 
sonic logs recorded in wells (Figure 12). The data 
in such a model will deviate significantly from 
the data to be fitted.

Designing the model weighting matrix is of 
crucial importance. We assume it to be diagonal 
in this article, for simplicity, although off-diago-
nal information is expected to be quite impor-
tant. The variance along this diagonal will be the 
product of two components (Figure 13). One will 
come from the expected knowledge of velocity 
in nearby wells. This prior variance will increase 
as we move away from the wells. Moreover, we 
have to handle the acquisition configuration in 
our expected prior variance. This prior variance 
should be larger at depth than at the free surface, 
where the sources and some of the receivers are 
located. Let us repeat that the total variance is 
simply the product of these two designed prior 
variances, and the results are much more 
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sensitive to the shape of this total variance than 
to its absolute values.

The hyperparameters λ1 and λ2 are adjusted 
empirically through a few trials. Moreover, we 
design an automatic decrease of the hyperpa-
rameter λ2 through iterations based on the de-
creasing rate of the misfit function, in such a 
way that the final image is only related to the 
data misfit. We have used this dynamic tuning 
to steadily modify the misfit function during 
the inversion process. The initial data as well as 
the final data are shown in Figure 14. The final 
data are almost identical to the true data, which 
are not shown because it is not possible to see 

the differences in the data from this synthetic 
test.

Reconstructed models are displayed in Figure 
15, where we can see the influence of the prior 
information helping the optimization to con-
verge to the correct minimum by modifying the 
search path. It does not mean that the optimiza-
tion has allowed an increase of the total misfit 
function; it has simply taken another path for 
converging to another local minimum. It may 
have induced locally an implicit jump in the 
data component of the misfit function.

Speeding up FWI
The full waveform inversion is a rather inten-

sive task, and its application has been popular-
ized primarily in the context of acoustic propa-
gation. Even for that case, we may need to reduce 
the cost of the modeling or increase the conver-
gence of the optimization at the expense of the 
model reconstruction.
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Figure 12.  (a) The true model inspired by a 
Marmousi configuration, with shots at the free 
surface and receivers in two wells as well as at the 
free surface, (b) the smooth initial model, which 
allows us to have a rather good description of first-
arrival waveforms, and (c) the prior model, which is 
a linear interpolation between sonic logs in the two 
wells. Data in this model are very different from real 
synthetic data.
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An introduction to full waveform inversion   R1-23

When FWI is performed in the frequency 
domain, sparse frequency sampling is possible, 
and criteria have been designed by Sirgue and 
Pratt (2004) for such selective sampling. Warner 
et al. (2013b) discuss in detail how to subsam-
ple sources when performing FWI in time and, 
benefiting from this investigation, Operto et al. 
(2015) discuss the pros and cons of the frequen-
cy and time approaches. Herrmann (2010) pro-
motes randomized sampling to increase effi-
ciency. These strategies organize in different 
ways the feeding of the optimization kernel by 
selected seismic data. They may reduce com-
puter resource needs, with the goal of obtain-
ing the same quality universally in the image 
reconstruction.

For a 3D target-oriented investigation under 
the acoustic approximation, a frequency ap-
proach with a direct solver is quite appealing and 
competes well with time approaches. Because 
the wave equation is a linear equation, we can 
simulate waves for more than one source at the 
same time, as has been proposed for migration 
(Romero et al., 2000). For simplicity, let us con-
sider the frequency formulation of FWI for the 
acoustic pressure p, as described by Ben Hadj Ali 
et al. (2011), whereas Krebs et al. (2009) consider 

time approaches. The computational burden in 
FWI can be mitigated by summing encoded 
sources into supershots s s= Â =j

N
j ja1

s , where aj is a 
complex number. The encoded signature is de-
fined by the phase aj j= exp( )if  of modulus one. 
The adjoint source can be deduced with a similar 
summation. Because the conjugate of the coeffi-
cient aj for each term of the adjoint source is con-
sidered, thanks to the linearity of the partial dif-
ferential equations, the sum will be constructive 
for the source and its related adjoint source. The 
sum will be destructive for any unrelated source 
and adjoint source and will be considered as 
crosstalk. At position i in the mesh, the gradient 
of the parameter ml can be expressed as
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(42)

where the adjoint wavefield r is composed of 
complex-conjugate quantities.

The first term in the right side of equation 42 
corresponds to the standard gradient formed by 
stacking the contribution of each individual shot, 
whereas the second term corresponds to crosstalk 
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Figure 14.  (a) The initial data and (b) the final model data. For this synthetic example, the model data are 
nearly identical to the true data, which are not shown here.
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interferences between sources j and k. This extra 
term, referred to as crosstalk noise in the follow-
ing, alters the imaging result and, therefore, can 
be considered as noise. Therefore, the goal of the 
code phases j is to minimize the crosstalk noise. 
Random codes seem to be quite efficient in re-
ducing the noise over iterations (Schuster et al., 
2011; van Leeuwen et  al., 2011; Godwin and 
Sava, 2013). Of course, efficiency is difficult to 
analyze without considering the optimization 
engine. Castellanos et al. (2015) perform an in-
vestigation and conclude that a similar load for 
computer resources will be needed regardless of 
the technique used for the optimization. A slight 
advantage is assigned to the truncated Newton 
method, which seems to provide the final 

solution with the smallest variance. As noticed 
by Castellanos et  al. (2015), convergence is im-
proved because small local minima do not pre-
vent the updating from proceeding (Martin et al., 
2012). Coarsening the seismic data in a more or 
less random way also will mitigate the local-min-
ima influence. For nonlinear problems, there is 
no formal proof of convergence of such random 
strategy. Finally, some authors suggest combining 
stochastic approaches when far from the mini-
mum and moving to a deterministic approach 
when nearby (Friedlander and Schmidt, 2012; 
van Leeuwen and Herrmann, 2012).

Many strategies have been elaborated over 
the last 10 years to mitigate the computational 
burden of FWI. We shall see in the near future 
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different proposals for making FWI more af-
fordable, especially for the elastic case.

Multiparameter FWI
Because seismic acquisition in the future will 

include increasing numbers of offsets, partition 
of energy between P-waves and S-waves should 
be considered in seismic imaging. Therefore, 
elastic wave propagation should be examined, 
although it is a challenging problem that dra-
matically increases computer demand. Moreover, 
we shall face the problem of inverting more 
than one parameter. Even in the case of acoustic 
propagation, we also need to consider other pa-
rameters such as density, attenuation, and an-
isotropy (Tarantola, 1986; Crase et  al., 1990, 
1992; Plessix, 2006a; Epanomeritakis et  al., 
2008; Plessix and Cao, 2011; Prieux et al., 2013a; 
Gholami et al., 2013; Plessix et al., 2014, among 
others). For elastic cases, numerical illustrations 
are still quite simple and real applications re-
main rare (Prieux et  al., 2013b; Schäfer et  al., 
2013; Vigh et  al., 2014; Stopin et  al., 2014; 
Borisov et al., 2015).

Operto et al. (2013) discuss the challenges of 
multiple parameters. It is crucially important to 
identify strategies that allow us to extract infor-
mation on multiple parameters that have differ-
ent imprints in the recorded data. Alternative in-
versions are an often-used technique that may 
provide adequate convergence when we are able 
to identify a related hierarchy in the data with re-
spect to the different parameters. If not, we need 
to invert these different parameters simultane-
ously and, therefore, proper balancing among the 
parameters should be performed even at the ini-
tial stage of the inversion. Any incorrect projec-
tion onto a parameter related to a tradeoff be-
tween parameters will introduce features that will 
be very difficult to remove at later iterations in 
the update model. Another pertinent strategy for 
mitigating such a tradeoff is based on the sub-
space method, which takes into account local 
projection onto a subspace of model parameters 
(Kennett et  al., 1988; Kennett and Sambridge, 
1998; Baumstein, 2014, 2015). In addition to the 
subspace method, we need to consider constraints 
on this multiparameter reconstruction as, for ex-
ample, projections onto convex sets (POCS) 
(Baumstein, 2013).

In a multiparameter framework, we are inter-
ested in the reconstruction of several classes of 
parameters mj, with j = 1, M, where M is the 

number of parameter classes to be reconstructed. 
Using these notations and following equation 6, 
the gradient of the misfit function with respect 
to the parameter class j is given by
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Equation 43 is particularly interesting because it 
reveals that the gradient of the misfit function 
with respect to parameter class j is computed as 
the sum over the sources and receivers of the 
zero-lag crosscorrelation in time of the residuals 
with the partial derivatives of the synthetic data 
with respect to parameter class j.

The latter quantity can be expressed as
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d
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m
syn

syn syn
j

j jd d o( ) ( ) ( )� �2 ,
	

(44)

in which dmj is a perturbation of the model pa-
rameter j. The partial derivatives of the synthetic 
data with respect to parameter class j correspond 
to the perturbation of the signal recorded at the 
receivers, which would be caused by the intro-
duction of a perturbation dmj in the first-order 
approximation. This is the single scattering ap-
proximation — the perturbed signal can be inter-
preted as the one generated by the scatterer dmj 
acting as a secondary source.

From equations 43 and 44, we see that the 
only differences in the updates brought by the 
gradient to the different parameter classes come 
from the variation of the perturbed signal with 
the parameter class. If two parameter classes have 
similar scattering responses, the gradient of the 
misfit function does not allow us to distinguish 
between these two parameter classes. This is 
what is often referred to as tradeoff or crosstalk 
between parameter classes.

Of course, the structure of the Hessian opera-
tor will depend on the parameter selection, 
which can mitigate the tradeoff interaction 
among parameters (Innanen, 2014). We may 
also look at the expression of the Hessian opera-
tor. For the sake of simplicity, we will only con-
sider the Gauss-Newton approximation. In a 
multiparameter context, this matrix is composed 
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of M2 blocks with a symmetric structure. The ijth 
block is given by
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Now we see that block ij of the Gauss-Newton 
operator is computed as the sum over all sources 
and receivers of the zero-lag crosscorrelation in 
time of the signals scattered by perturbations of 
the parameter classes i and j. As such, it is a mea-
sure of the correlation between the scattering re-
sponse of parameter class i and that of parameter 
class j. This reveals that the inverse Hessian op-
erator can act as a decoupling operator on the 
gradient and should help remove crosstalk 
artifacts.

In order to illustrate these basic concepts of 
multiparameter inversion, we consider the 
simple example of 2D acoustic-frequency-do-
main FWI for simultaneous reconstruction of 
the P-wave velocity and density. The scattering 
response (or radiation pattern) of these two pa-
rameters for a given point of the medium in 
the acoustic approximation is illustrated in 
Figure 16. As can be seen at the scattering point, 

the radiation pattern of the P-wave velocity is 
isotropic. The radiated energy has the same am-
plitude in all directions. Conversely, the radia-
tion pattern of the density at the same scattering 
point is directional because the energy of the 
scattered signal is mostly concentrated at short-
angle illumination. From these two diagrams, 
one can thus expect that the coupling between 
the two parameters will be stronger if the seismic 
acquisition concentrates on small illumination 
angles, whereas it should be less severe if the ac-
quisition spans a broader range of illumination 
angles.

Now consider the following tutorial experi-
ment. A square homogeneous background is per-
turbed in its center with two nonoverlapping 
inclusions of P-wave velocity and density, re-
spectively (Figure 17). Seismic data are acquired 
on this perturbed medium. The initial model is 
set to the background homogeneous model, and 
we attempt to simultaneously recover the two 
perturbations from the seismic data by using 
multiparameter FWI.

Two acquisition configurations are consid-
ered. The first is a fixed-spread surface acquisition 
with sources and receivers on top of the domain 
only (with just small illumination angles). The 
second follows a fixed-spread full-illumination 
design with sources and receivers all around the 
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target zone (with a broad range of illumination 
angles). In Figure 18, the model perturbation de-
duced from gradients with respect to the P-wave 
velocity parameter and the density parameter in 
the surface-acquisition case are presented. As 
could be expected, the similarity of the radiation 
patterns of these two parameters for small illu-
mination angles makes their gradients almost 
identical.

In Figure 19, the model perturbation deduced 
from gradients with respect to the P-wave veloc-
ity parameter and the density parameter are pre-
sented in the full-acquisition case. Despite a 
broader range of illumination angles, the P-wave 
velocity gradient contains a strong imprint of 
the density perturbation. The density gradient 
contains two perturbations of equal intensity: 
one at the position of the P-wave velocity and 
one at the position of the density. Compared 
with the surface illumination case, the geometric 
shape of the full-acquisition perturbation is bet-
ter recovered. However, the tradeoff between the 
two perturbations is still strong.

The Gauss-Newton operator is computed for 
the two acquisition setups and is presented in 
Figure 20. In both cases, the upper diagonal 
block corresponds to the second-order deriva-
tives with respect to the P-wave velocity, whereas 
the lower diagonal block corresponds to the sec-
ond-order derivatives with respect to the density. 
The off-diagonal blocks are identical, as a result 
of the symmetry of the Hessian operator. They 
correspond to the cross derivatives with respect 
to P-wave velocity and density (see equation 45). 
As can be seen, the amplitude of the P-wave ve-
locity block is larger in the full-illumination 

setup. This is due to the similar sensitivity of this 
parameter to all illumination angles, whereas the 
density is only sensitive to short illumination 
angles. Because the Gauss-Newton operator is 
built as a sum over source and receiver pairs, the 
contribution of large-offset pairs accumulates for 
the P-wave velocity, whereas the corresponding 
contribution for the density is almost negligible. 
Conversely, for surface acquisition, the ampli-
tudes of the blocks are comparable, because only 
short illumination angles contribute to these 
blocks.

To further analyze the differences between the 
two configurations, we perform a singular value 
decomposition (SVD) of the two operators (full il-
lumination versus surface illumination). The sin-
gular value distributions are presented in Figure 
21. One can see that the decrease of the singular 
values is faster for surface illumination, which in-
dicates a poorer conditioning of the operator in 
this case. On the basis of this SVD decomposition, 
it is possible to derive an approximate inverse of 
the Gauss-Newton operator by truncating the sin-
gular values below a certain level, represented by 
dotted lines in Figure 21. Neglecting the smallest 
singular values defines a regularized version of the 
inverse Gauss-Newton operator. We apply this ap-
proximate inverse to the gradient in the surface-
acquisition case (Figure 18) and the results are 
presented in Figure 22. The perturbations brought 
to the parameter by this preconditioned gradient 
are decoupled correctly compared with the one 
brought by the gradient alone. The shape of the 
perturbations is recovered. That illustrates the po-
tential for the Hessian operator to mitigate cross-
talk between parameters.

Distance (km)

a)
0

1

2

3

4

D
ep

th
 (

km
)

V
el

oc
ity

 (
m

/s
)

5

6

7

0 1 2 3 4 5 6 7
1600

1580

1560

1540

1520

1500

Distance (km)

b)
0

1

2

3

4

D
ep

th
 (

km
)

D
en

si
ty

 (
kg

/m
3 )

5

6

7

0 1 2 3 4 5 6 7
1100

1080

1060

1040

1020

1000

Figure 17.  Perturbed (a) P-wave velocity and (b) density models used for the multiparameter tutorial test.
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However, computing an approximate inverse 
of the Gauss-Newton operator through a trun-
cated SVD method is not affordable for large-
scale optimization problems. Approximations of 
the inverse Hessian operator adapted to large-
scale problems have to be considered — namely 
l-BFGS (Nocedal, 1980; Nocedal and Wright, 
2006) or the truncated Newton method (Nash, 
2000).

The l-BFGS strategy consists of rank 2 updates 
of an initial approximation taken as the identity 
if no prior information is known. These rank 2 
updates are based on the l-previous values of the 
gradient, so the l-BFGS strategy does not require 
computation of quantities other than the gradi-
ent in order to build an approximation of the 
inverse Hessian operator. However, the quality of 

this approximation in the early iterations strong-
ly depends on the prior knowledge of the inverse 
Hessian operator. Starting from the identity, the 
initial model updates are along the direction of 
the model gradient. In a multiparameter con-
text, as illustrated by the tutorial case study pre-
sented here, this can be harmful for a decoupled 
reconstruction of the parameter classes. Tradeoffs 
are introduced in the early stage of the inversion, 
making it extremely difficult to decouple the pa-
rameters in the later iterations.

On the other hand, the truncated Newton 
method is based on an inexact solution of the 
Newton equation (equation 5) through a matrix-
free conjugate-gradient method. This requires 
the ability to compute Hessian-vector products 
efficiently. As emphasized in Epanomeritakis 
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et al. (2008), Fichtner and Trampert (2011), and 
Métivier et  al. (2013, 2014), this can be per-
formed through a generalization of the adjoint-
state strategy usually implemented for computa-
tion of the gradient. The computation of Hessian-
vector products thus only requires additional 
wave-propagation problems to be solved. The 

advantage of the truncated Newton method in a 
multiparameter FWI context is that the accuracy 
of the inverse Hessian approximation should be 
the same from one iteration to the other. This is 
especially important for the first iterations: the 
truncated Newton method should enable us to 
better decouple the parameters in the early stag-
es of the inversion.

The optimization strategies used in the con-
text of realistic-scale multiparameter FWI appli-
cations should be completed with efficient pre-
conditioning strategies. In this context, a precon-
ditioner is an approximation of the inverse 
Hessian operator, which can be computed at low 
cost and inserted in the optimization framework. 
Both the l-BFGS and truncated Newton methods 
can be used with a preconditioner (Métivier and 
Brossier, 2016). A generalization of the diagonal 
preconditioner proposed by Shin et  al. (2001) 
and improved by Choi and Shin (2008) has been 
recently promoted by Innanen (2014) and 
Métivier et  al. (2015). This strategy amounts to 
approximating each block of the Hessian by a di-
agonal matrix, following the pseudo-Hessian ap-
proximation of Choi and Shin (2008). The pre-
conditioner is computed as an inverse of this 
block approximation, which can be computed 
straightforwardly through local inversion of 
these corresponding submatrices. The leading 
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idea is to account in this preconditioner for the 
local coupling between parameters, neglecting 
the spatial interaction that may exist between pa-
rameters of different classes. Preliminary results 
seem to indicate improved reliability of multipa-
rameter inversion results by using this precondi-
tioner in conjunction with the truncated Newton 
method (Métivier et al., 2015).

Summary and the future of FWI
Full waveform inversion has been found to be 

a useful tool for extracting pieces of information 
from seismograms/traces. Of course, this poten-
tially high-resolution performance comes with 
strict requirements related to the cycle-skipping 
problem, because we are concerned about seis-
mic oscillatory signals. The workflow related to 
the model updating has been mitigated through 
an adjoint formulation in which the gradient 
vector of the misfit function with respect to 
model parameters is evaluated directly without 
dealing with Fréchet derivatives. An extention 
for handling the Hessian matrix is still a chal-
lenging subject, although a second adjoint for-
mulation could provide an efficient strategy.

The fundamental feature of FWI is the ab-
sence of prior scale separation for signal interpre-
tation; the single scattering formulation is at the 
core of FWI and each seismic phase is interpreted 
the same way by using this scattering assump-
tion. That is the physical intuition on which FWI 
is based. FWI may benefit from the different 
hierarchies found in the seismic data. Various 
formulations have been developed in recent 

years that are based on such hierarchies. Basic 
concepts related to linear partial differential 
equations (forward modeling) as well as linear 
algebra (linearized optimization) can be handled 
quite naturally when starting an FWI investiga-
tion. The gradient can be computed efficiently 
by using either a second-order hyperbolic wave 
equation or a first-order hyperbolic wave equa-
tion. The choice is really application-dependent.

Uncertainty quantification and model-driven 
ingredients are important new trends in FWI. 
The construction of the initial model to make 
FWI accurate and efficient is a very active re-
search area because it is a critical issue for this 
technique. A simple and systematic strategy is 
based on the introduction of scale separation 
tied to FWI concepts. No phase picking is per-
formed in this strategy. Other strategies may 
perform as well for high-resolution seismic im-
aging, and considerable progress will be made. 
Of course, an extension to 3D will be the selec-
tive criterion for those different methods.

FWI is evolving toward elastic probing of the 
medium because the focus is increasingly on am-
plitude information. This probing will require 
multiparameter reconstruction in which the 
Hessian matrix, the second derivative of the mis-
fit function, will play a crucial role.

For people involved in high-resolution seis-
mic imaging, the trend is the steady movement 
from impressive real-world examples that are 
based on acoustic propagation to well-constrained 
multiparameter reconstructions that increasing-
ly are based on elastic propagation. At the same 
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time, other challenges, such as microscale char-
acterization (Dupuy et al., 2016), may need alter-
native optimization strategies such as global op-
timization.

Appendix A: Lagrange multipliers
Optimization under constraints can be 

achieved using Lagrange multipliers. We present 
a systematic if not automatic workflow for build-
ing the misfit-function gradient. Let us reiterate 
that the expression of the misfit function is
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,, 	(A-1)

and the relation between synthetic data and 
computed wavefields is given by the expression

	
d x w xsyn r r( ) ( ), ,t R t= .

	
(A-2)

The first adjoint wavefield λ has the same 
number of components as does the wavefield 
vector w, whereas the second field  has the 
same number of components as does the data 
vector dsyn. They are related to a new auxiliary 
expression L, called the Lagrangian, which de-
pends now on independent quantities (m, w, λ, 
dsyn, ). At sampled model points, often called 
realizations, these quantities m l, ,w  are linked 
through the wave/adjoint equations and the 
projection relation to the model vector m. Such 
conditions are defined as constraints. Over the 
entire domain Ω, the Lagrangian can be written 
as
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A necessary requirement is that the differen-
tial form dL  should be zero at the minimum, 
which is identical for Lagrangian and misfit 
functions. Therefore, the five gradients of L with 
respect to arguments (which are considered as 
independent) should be equal to zero through 
the list:

(1)	 Zeroing the gradient with respect to the 
vector  comes from the projection relation 
(equation 24).

(2)	 Zeroing the gradient with respect to the 
vector dsyn leads to the equation

	
m( ) ( ( ) ( ))x d x d xr syn r obs r, , , ,t t t= -

	
(A-4)

	 at each receiver, taking into account that 
∂ ∂ = -C/ syn syn r obs rd d x d x( ( ) ( )), ,t t .

(3)	 Zeroing the gradient with respect to the 
vector λ gives the wave equation.

(4)	 Zeroing the gradient with respect to the 
vector w provides the partial differential 
equation verified by the vector λ, which is 
called the adjoint wavefield.

(5)	 Zeroing the gradient of the Lagrangian 
function with respect to the parameter 
vector m will provide a new perturbation 
solution for updating the model.

Let us work out the fourth condition. Away 
from sources, we find the expression
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and, with the help of the symmetry of matrices S 
and D  as well as an integration by parts, we find
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which should be equal to zero at the minimum. 
For the integration by parts, we have considered 
that boundary conditions are such that direct w 
and adjoint λ wavefields are zero outside the do-
main Ω, that initial conditions for the direct 
wavefield are zero, and that final conditions for 
the adjoint wavefield are zero. The gradient of 
the misfit function C  with respect to the wave-
field w can be written as

∂
∂

= ∂
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We deduce that the adjoint wavefield should 
verify the following partial differential system
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with conditions λ(x, Tw) = 0. The source terms of 
this equation are the residuals at the receivers. 
Note that we sum only over receivers associated 
with the same source. Receivers emit unex-
plained residuals inside the medium, and we in-
tegrate in time from the final recording time. 
Equivalently, we can revert time in the residual 
source and use the final residuals as initial condi-
tions for a backward time integration using a 
negative time step. We consequently propagate 
the adjoint wavefield in the forward way as the 
direct wavefield using the same code. Of course, 
we shall not use the implicit system (equation 
25) for the adjoint field estimation but instead 
will use the equivalent explicit system
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where the adjoint source term related to resid-
uals has been modified by medium properties 
at the receiver positions, because we want to 
solve the adjoint problem using the explicit 
time integration. This source term is highly de-
pendent on the local properties at receivers 
and, therefore, on the recording quantities at 
these positions.

Finally, let us consider the fifth condition. 
Zeroing the gradient of the Lagrangian L with 
respect to the expected new model solution 
m + Δm will give us the expression
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to be solved through the Newton method. For 
that, we will need the gradient ( )∂ ∂ ¥L/ Tm  
( )m d w, , , ,m l  at the current solution (a model re-
alization in which fields, identified by the upper 
bar sign, verify constraints). This gradient turns 
out to be equal to the misfit gradient ( ) ( )∂ ∂C/ Tm m  
at these realizations. When considering the 
Lagrangian function with independent variables, 

the misfit function does not depend explicitly 
on the model vector. Consequently, we have
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At the realization point, we have
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and, therefore, one can deduce the misfit func-
tion gradient we are seeking,
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Note that there are no explicit spatial deriva-
tives in this estimation of the gradient, which is 
based on the first-order hyperbolic system 
(velocity-stress):
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Using the density and the compliance compo-
nents, we find again the expressions
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with implicit summation over the capital indi-
ces. The matrix ∂S/∂SIJ is composed of elements 
of values zero or one. From the identity 
SC = CS = I, let us remark that the gradient of the 
compliance matrix with respect to model param-
eters is
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Away from sources, the gradient with respect to 
model parameters can be decomposed into
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which can be used as long as particle velocity 
and stresses are available with implicit summa-
tions over capital indices. The matrix ∂M/∂MIJ is 
composed of elements of values zero or one. We 
may consider the equivalent system
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as shown in the main text, which can be ob-
tained with the extended second-order hyper-
bolic system.
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