

GeoNeurale

TWO for ONE

2 for 1 or 1 + 1 = 3

R. E. (Gene) Ballay, PhD

GeoNeurale

Lichtenbergstrasse 8

D-85748 Munich-Garching

Germany

T +49 (0) 89 5484 0

T +49 (0) 89 5484 2240

F +49 (0) 89 8969 111 7

Assume

$$n = 2$$
 and $S_{xo} = S_{w}^{1/5}$

- Appropriate specific exponent per local, or analogue, experience
- $S_{xo} = S_w^{1/5}$ results in relation at right, for which $Sxo \sim 70\%$ when $Sw \sim 20\%$

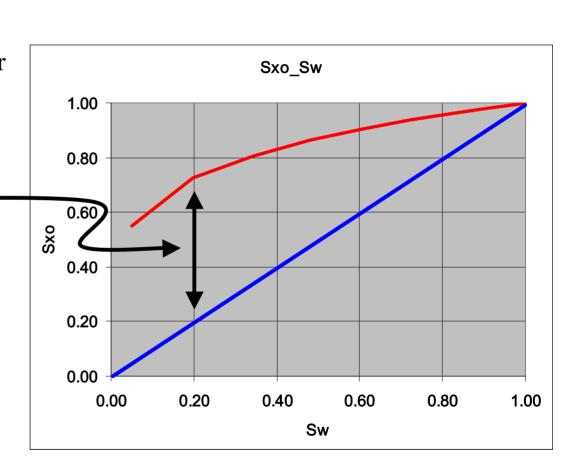
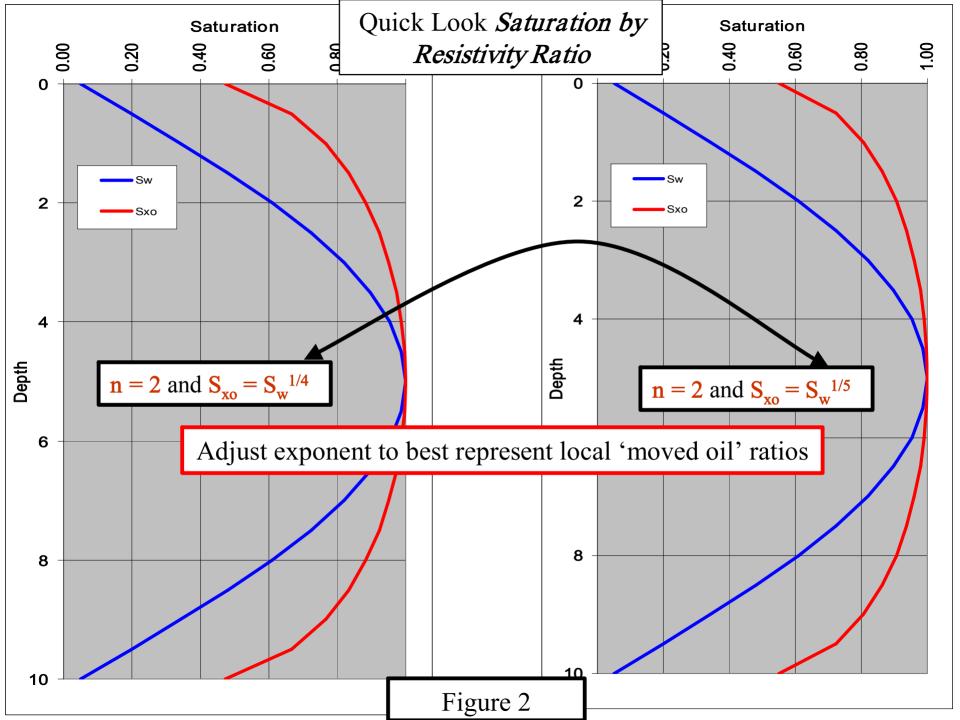



Figure 1

Middle East Carbonate

- Estimation of S_w from R_{deep} R_{xo} Ratio
 - Porosity not required
 - Requires water zone, or given (R_w/R_{mf}) ratio
- From wet zone
- $(R_{mf}/R_{w}) \sim (R_{xo}/R_{deep}) \sim (1.0/0.23) \sim 4.35$
- In the 'pay
- $S_w^{8/5} = (R_w / R_{mf}) * (R_{xo} / R_{deep}) = (1/4.35)*(1.2/1.5)$
- $S_w^{8/5} = 0.184 \& S_w = 0.35$
- <u>Be careful</u> reading logarithmic scales it's easy to misjudge the numerical (actual) value

Schlumberger Arabia Well Evaluation Conference - 1975

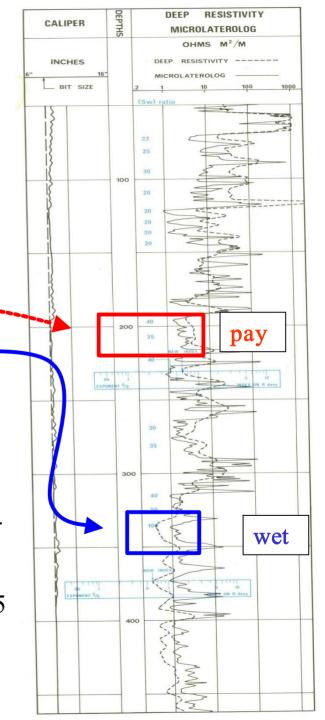
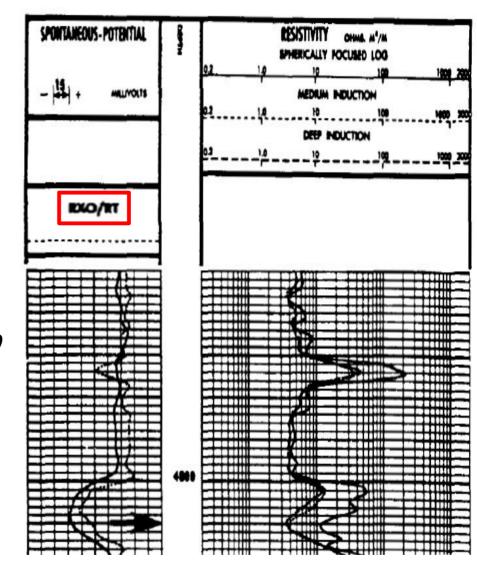


Figure 3

Quick Look S_w Evaluation of the Kansas City - Lansing, Anadarko Basin

• Moveable Hydrocarbon Index calculated according to

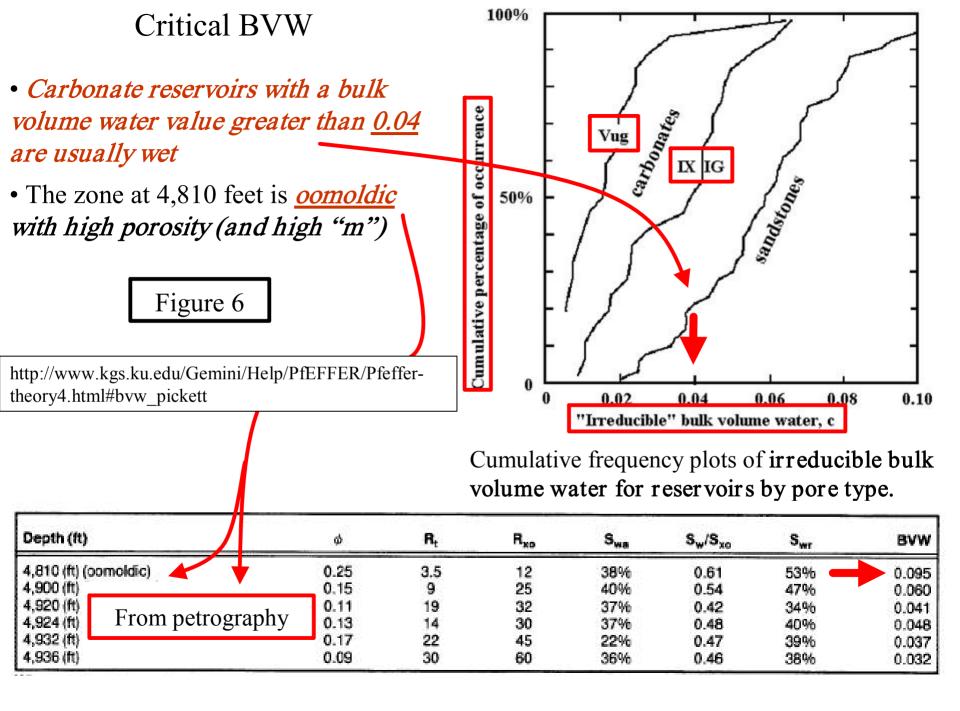

MHI = Sw/Sxo = Sqrt[(Rxo/Rt)/(Rmf/Rw)]

• Quick Look water saturation calculated according to

$$Sw(Rat) = [(R_w/R_{mf})*(R_{xo}/R_{deep})]^{(0.625)}$$

- Kansas City- Lansing Formation, northwestern shelf, Anadarko basin.
- The *Rxo/Rt quick look* evaluation at *4,810* indicates the zone is wet
- Exhibit following

Figure 4


COMBINING WATER SATURATION BY RATIO METHOD, MOVEABLE HYDROCARBON INDEX, BULK VOLUME WATER AND ARCHIE WATER SATURATION. Found with Google. Author, date and publication details n/a.

Quick Look S_w Evaluation of the Kansas City - Lansing, Anadarko Basin

Depth (ft)	ø	Rt	R _{xo}	S _{wa}	S _w /S _{xo}	Swr	BVW
4,810 (ft)	0.25	3.5	12	38%	0.61	53%	0.095
4,900 (ft)	0.15	9	25	40%	0.54	47%	0.060
4,920 (ft)	0.11	19	32	37%	0.42	34%	0.041
4,924 (ft)	0.13	14	30	37%	0.48	40%	0.048
4,932 (ft)	0.17	22	45	22%	0.47	39%	0.037
4,936 (ft)	0.09	30	60	36%	0.46	38%	0.032
Where: R _w = 0.032 R _{ml} = 0.30	†			Fro	om Density	/-Neutron.]
S _{wa} = Archie water saturation				110		7 TCutton.	J

- The zone at 4810' has *good porosity* and <u>low Archie water saturation</u>.
- The Moveable Hydrocarbon Index ($S_w/S_{xo} = 0.61$) is greater than 0.60 and the Ratio Method water saturation is <u>high</u> (53 percent). These calculations indicate that the <u>zone may be wet</u>.
- The calculation which further indicates the zone is wet is the very high bulk volume water value (0.095)
 - Exhibit following
 - This BVW is based upon $\Phi * S_w(Archie)$, with "m" = 2.0, and will increase if $S_w(Ratio)$ is used for the calculation (ie the zone will look even "wetter")

COMBINING WATER SATURATION BY RATIO METHOD, MOVEABLE HYDROCARBON INDEX, BULK VOLUME WATER *AND* ARCHIE WATER SATURATION. Found with Google. Author, date and publication details n/a.

