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Abstract
Electrical borehole wall images represent grey-level-coded micro-resistivity measurements
at the borehole wall. Different scientific methods have been implemented to transform
image data into quantitative log curves. We introduce a pattern recognition technique
applying texture analysis, which uses second-order statistics based on studying the
occurrence of pixel pairs. We calculate so-called Haralick texture features such as contrast,
energy, entropy and homogeneity. The supervised classification method is used for
assigning characteristic texture features to different rock classes and assessing the
discriminative power of these image features. We use classifiers obtained from training
intervals to characterize the entire image data set recovered in ODP hole 1203A. This yields a
synthetic lithology profile based on computed texture data. We show that Haralick features
accurately classify 89.9% of the training intervals. We obtained misclassification for
vesicular basaltic rocks. Hence, further image analysis tools are used to improve the
classification reliability. We decompose the 2D image signal by the application of wavelet
transformation in order to enhance image objects horizontally, diagonally and vertically. The
resulting filtered images are used for further texture analysis. This combined classification
based on Haralick features and wavelet transformation improved our classification up to a level
of 98%. The application of wavelet transformation increases the consistency between standard
logging profiles and texture-derived lithology. Texture analysis of borehole wall images
offers the potential to facilitate objective analysis of multiple boreholes with the same
lithology.

Keywords: pattern recognition, borehole geophysics, texture analysis, electrical borehole wall
images, classification

1. Introduction

The Ocean Drilling Program (ODP) (1984–2003) and the
follow-up Integrated Ocean Drilling Program (IODP) are long-
term international scientific projects exploring the history of
ocean basins and the oceanic crust by drilling. The main
information comes from core recovered from the drilled holes
(e.g. Benaouda et al (1999)). Since core recovery is often

only partial, downhole measurements play a crucial role
in providing data where core sections cannot be obtained.
Lithology reconstruction using logging data is based on
the concept of electrofacies (Serra 1986), which has been
successfully applied to crystalline rocks (Bartetzko et al 2002,
Pechnig et al 1997). This method translates measurements
of physical properties from logs into lithological terms. A
set of log responses is assigned to lithological facies within
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Figure 1. Our image processing workflow: (1) assignment of rock facies, (2) optional wavelet filtering, (3) feature generation and extraction
based on Haralick texture features, (4) determination of a classification function based on discriminant analysis and finally, (5) classification
of entire FMS images.

training intervals and reduced to a classifier function in order
to characterize rock at depth intervals outside the training
intervals (Bartetzko et al 2002, Benaouda et al 1999).

Within the ODP, the Formation MicroScanner (FMS)
image logging tool is routinely deployed, representing
resistivity measurements at the borehole wall in colour coding.
Mostly, the image evaluation is based on visual inspection.
The integration of FMS images and core data has provided
detailed stratigraphic information on carbonate platforms
(Cooper et al 1995), volcaniclastic sequences (Pezard et al
1992), as well as for facies reconstruction of extrusive
sequences (Bartetzko et al 2003) and basement lithology
(Barr et al 2002). Different approaches have been made
to quantify information from borehole wall images in a
similar way to the electrofacies log. Tyagi and Bhaduri
(2002) translated the resistivity measured by individual buttons
into porosity using Archie’s law and analysed the resulting
porosity histogram for each depth point with respect to porosity
heterogeneities. Delhomme (1992) applied mathematical
morphology for image segmentation to quantify resistivity
heterogeneity. Textural segmentation based on Law’s energy
was implemented by Luthi (1994). In this case, the image
is filtered by assigned texture masks and the resulting
variance between mask and image is studied to classify
bedding units. Machecler and Nadal (2004) proposed an image
processing workflow depending on textural characteristics and
type of segmentation (contour enhancement or texture edge
detection) to extract the oriented textured feature boundaries
without prior classification. Ye et al (1998) and Knecht
et al (2003) combined first-order parameters derived from

histogram and second-order statistics (study of pixel pairs),
such as auto-covariance to analyse sedimentary sequences.
Geostatistical analysis, another second-order statistic, was
applied by Tilke et al (2006) to derive porosity from borehole
wall images.

In this paper, we also present a method based on the
study of pixel pairs. Our study is focused on the grey-level
distribution of FMS images as was successfully performed for
photographic core images by Harris et al (1993). We derive
texture features from FMS images and assign texture facies to
each rock class. Based on supervised statistical classification
techniques, we apply the classifiers obtained from training
intervals to the entire borehole.

The paper is organized as follows. The main part
describes our approach used to transform FMS image data
into quantitative log curves applying Haralick texture features.
The proposed image processing workflow is shown in
figure 1. The second part of the paper presents a case study
from the ODP. We apply this technique to data from ODP hole
1203A drilled during Leg 197 in the northwest Pacific Ocean
in which volcaniclastic sediments, pillow and massive basalts
were recovered (Shipboard Scientific Party 2002).

2. FMS data acquisition and image processing

The Formation MicroScanner (FMS) was developed for micro-
resistivity measurements and maps the electrical conductivity
at the borehole wall. The tool is equipped with four
perpendicularly exposed arms which are opened downhole and
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Table 1. Common texture features computed from grey-level co-occurrence matrix C(i, j) (Van de Wouver et al 1999).

Haralick feature Formula

Contrast F1 = ∑n

(i;j=0)(i − j)2 ∗ C(i, j)

Energy F2 = ∑n

(i;j=0) C
2(i, j)

Entropy F3 = −∑n

(i;j=0) C(i, j) ∗ logC(i, j)

Local homogeneity F4 = ∑n

(i;j=0)
1

1+(i−j)2 ∗ C(i, j)

Maximum probability F5 = maxC(i, j)

Cluster shade F6 = ∑n

(i;j=0)(i − Mx + j − My)
3 ∗ C(i, j)

Cluster prominence F7 = ∑n

(i;j=0)(i − Mx + j − My)
4 ∗ C(i, j)

Information measure of correlation F8 = (C3−Hxy )

max{Hx,Hy }
where
Mx = ∑n

(i;j=0) i ∗ C(i, j) My = ∑n

(i;j=0) j ∗ C(i, j)

Sx(i) = ∑n

(j=0) C(i, j) Sy(j) = ∑n

(i=0) C(i, j)

Hxy = − ∑n

(i,j=0) C(i, j)log(Sx(i)Sy(j))

Hx = −∑n

(i=0 Sx(i) ∗ logSx(i) Hy = − ∑n

(j=0 Sy(j) ∗ logSy(j)

force each pad against the borehole during upward logging.
Each pad comprises an array of 16 button electrodes (Lovell
et al 1998). A single pass of the tool measures about 30%
of a 25.4 cm diameter borehole as typically drilled in ODP
(Pezard et al 1992). During logging, a current flows from
each electrode to a single return electrode located at the tool
top. Due to the sensor geometry, the tool signal has a shallow
penetration depth of a few centimetres beyond the borehole
wall. The multiple button electrodes are held at a constant
potential relative to the return electrode. A variable current is
supplied to each electrode to maintain the constant potential.
This current is related to the electrical conductivity of the
borehole wall. Since electrical images are based on a two-
electrode measurement, they do not represent true formation
resistivity (Pezard et al 1992, Lovell et al 1998) but, rather,
relative changes in electrical conductivity (Cheung 1999). The
sampling rate of the FMS tool is about 2.5 mm corresponding
to a vertical resolution of about 5 mm (Goldberg 1997). Arm
extension is used to measure the borehole diameter between
pad pairs 1–3 and 2–4, respectively. The maximum extension
of the caliper arms is 38.1 cm (15.0 inch). If the borehole
exceeds this diameter (washouts), the pad contact will be
inconsistent and the FMS image will be de-focused and blurred
(Barr et al 2002). Consequently, image interpretation of
corresponding pads is inhibited.

Image processing converts the current intensities
measured by each electrode into images: the current intensity
is translated into a variable intensity of colour or grey-level
images through a series of processing steps which include
corrections for variations in focusing current and tool speed.
The resulting image is then normalized statically so that each
grey level corresponds to a distinct current intensity for the
entire image. This results in a large-scale visualization of data
and permits us to compare data along the entire log. In contrast,
important fine details are visualized by dynamic normalization
which enhances local details through histogram equalization
within a sliding window (Lovell et al 1998). In our study, light
and dark grey levels represent resistive parts and conductive
borehole wall features, respectively.

3. Texture analysis

We apply pattern recognition techniques on borehole wall
images in order to progress from qualitative and subjective
to quantitative and objective image interpretation. Pattern
recognition aims to classify data based on statistical informa-
tion extracted from patterns (Duda et al 2001). We focus on
texture-based analysis. Image texture is defined as a function
of the spatial variation in grey level intensities (Tuceryan
and Jain 1998). It plays an important role in many image
processing tasks, ranging from medical imaging to remote
sensing (Van de Wouver et al 1999). First-order texture
parameters are based on the statistics of single-pixel grey
levels. Second-order parameters reflect the statistics of grey
level pairs (Van De Wouver 1998). We apply texture analysis
to FMS borehole wall images using second-order parameters
in order to classify rocks based on their resistivity contrast.
The first step of texture analysis is feature extraction, which
reduces the image to a set of descriptive features. The second
step classifies image parts based on the features computed
from the pixel pairs. The main analysis tool for texture feature
extraction is the so-called grey level co-occurrence matrix
(C), which counts the presence of grey level pairs (i, j) for
a given displacement vector

−→
d (see figure 2) (Tuceryan and

Jain 1998, Van De Wouver 1998). Common co-occurrence
parameters, known as so-called Haralick texture features (Jain
et al 2000), are listed in table 1. We used a rotation-invariant
parameter configuration, which means we applied four
different displacement vectors as displayed in figure 2 to
calculate the matrix C(i, j). Then, we determined the texture
feature from each matrix, and finally averaged the directional
results for each depth point. Figure 3 represents a set of
Haralick log curves computed from a static FMS image.

In addition, we considered the distribution of the
texture features up to the fourth statistical moments such
as expectation (first moment), variance (second moment),
skewness (third moment) and kurtosity (fourth moment).
These four moments of each texture feature are derived
from data within a 50 cm long sliding window. These
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Figure 2. An image is an array of grey levels. Determination of the grey level co-occurrence matrix (GLCM) C: the entry (i, j) is the
number of occurrences of the grey level pair i and j that are a distance d apart (Tuceryan and Jain 1998, Van De Wouver 1998). The GLCM
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statistical moments of the Haralick texture features are used
for classification.

In our study, the FMS images were processed based on a
64-grey-level scale. Hence, the matrix C has a dimension of
64 × 64. In order to determine this matrix, we use a sliding

window of 16 × 16 pixels, which represents the entire pad
width (16 electrodes). Parameters derived from each window
are depth-related to the centre of each window. We use both
the dynamic and the static normalization in our study. These
differently processed images are simultaneously included in
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the analysis. We tested the improvement of classification
by using either dynamically or statically processed images in
comparison to considering both image types simultaneously.
We found that increasing the feature space by considering
both processed image types at once had a considerable
influence on the classification results. Using just statically
processed images did not allow us to distinguish the assigned
igneous rock classes satisfactorily. Including the feature space
of dynamically processed images in the analysis, however,
significantly improved classification of those classes.

4. Wavelet transformation

An image may be considered as a 2D signal of grey-level
intensities. Transformations can be applied on images for
signal processing in order to enhance image features. Wavelet
functions represent a signal of limited duration, which are
used to decompose the input signal (image) by applying
wavelet transformation. In contrast to sines and cosines used
as basis functions for Fourier analysis, wavelets are finite
and well localized in both time (or location) and frequency
(Wickerhauser 1994). The continuous wavelet transformation

FW(a, b) = |a|−( 1
2 )

∫ ∞

−∞
f (x)�

(
x − b

a

)
dx

with a, b ∈ R a �= 0 (1)

is a convolution of the signal f (x) with the scaled and shifted
versions of the mother wavelet

�a,b(x) = 1√|a|�
(

x − b

a

)
. (2)

Equation (1) describes the details of f (x) at a position b and
resolution a.

We used wavelet transformation for decomposing images
into so-called detail images by bandpass filtering in a specific
direction. The detail image, as illustrated in figure 4, contains
directional information at a certain scale. Thus, wavelet
transformation allows us to decompose images into a set of
subimages at selected scales. This is known as multiscale
representation of depth d of the image I (Van de Wouver et al
1999). We performed a single level image decomposition for
d = 1 using the Coiflet 2 and Pseudocoiflet 4 mother wavelets
shown in figure 4. Within the detail images, Haralick texture
features and their statistical moments were computed in the
same way for the original FMS images. The reapplication of
texture analysis within these detail images yields a variety
of new texture features. Besides Haralick features in the
transformed images, the band energy and histogram signature
of the wavelet detail coefficients are additional texture features
which are also used for classification. The wavelet histogram
signature is characterized by its variance (α) and the decreasing
rate of the histogram peak (β) (Van De Wouver 1998).
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5. Classification

For classification we use the supervised classification method.
This means texture facies are calibrated within homogenous
sections called training intervals where core data are available
(Benaouda et al 1999, Bartetzko et al 2002). From these
training intervals, only 1000 randomly selected data points are
used as samples for each texture class. We tested how many
sampling points would be needed for robust classification
starting from 500 to 1000 data points. We found that
repeated measurements for 1000 randomly selected sampling
points yield a robust classification. The resulting bias in
classification is less severe than the possible noise introduced
by the image acquisition (see figures 7 and 9). For each
sampling point, texture features are calculated and combined
in a feature vector −→x = (x1, x2, . . . , xp) which is labelled
with the corresponding rock class. Considering four statistical
moments of the distribution of eight Haralick feature values
in a small interval, each data point of the training set is
represented by a 32-dimensional feature vector and creates
a point in a 32-dimensional feature space. Wavelet-based
features increase the dimension of the space additionally
(up to 136 dimensions).

If the feature values form well-separated clusters for each
group in the feature space and if these clusters represent the
distribution of the features to be evaluated, a computer-based
classification method can be applied to classify unknown data
points by texture features. Our approach for classification can
be roughly summarized in two steps (Jain et al 2000):

(i) The feature extraction mode finds the appropriate set
of features for describing the input patterns. Hence, a
reduced set of features is selected which discriminates the
different clusters best.

(ii) The classification step uses the classifiers defined within
training intervals to assign an unknown data point to the
group closest to the cluster.

5.1. Feature reduction

If all features are used, some of them may be correlated with
each other and bear no further information. Other features
may be unable to discriminate between different rock classes.
These features are redundant and useless and may reduce
the accuracy and stability of the classification process (Duda
et al 2001). Therefore, we first identify those texture features
which discriminate best. To this end, features must be found
which keep the group clusters as compact as possible and at
a maximum distance to each other. A common technique to
achieve this is the stepwise discriminant analysis (Einslein
1977, Huang et al 2003).

This method analyses a ratio called Wilks’-�:

�(p) = det(SW (−→x ))

det(ST (−→x ))
, −→x = (

x1, x2, . . . , xp

)
(3)

where SW is the within-class scatter matrix

SW =
q∑

g=1

ng∑
i=1

(−→xig − −→µg)(
−→xig − −→µg)

T . (4)

This matrix is the sum of the covariance matrices for each of
the q classes. The covariance matrix describes the scatter of
the training vectors −→xig about the mean −→µg of the gth group.

The second matrix in equation (3) is the total-scatter
matrix

ST =
n∑

i=1

(−→xi − −→µ )(−→xi − −→µ )T (5)

where −→xi is a training sample and −→µ the mean of all samples.
Equation (5) describes the scatter of all features about a
common mean. In both equations (4) and (5), the variable
T stands for the transposed matrix.

To find the relevant features for classification, the stepwise
procedure adds a feature (a further dimension) and the partial
�-statistics,

��(p + 1) = �(p + 1)

�(p)

for �(p + 1) −→x = (x1, x2, . . . , xp, xp+1), (6)

is considered. The corresponding F-statistics (Einslein 1977),

F = (n − p − q)

(q − 1)

1 − ��(p + 1)

��(p + 1)
, (7)

is used to test the significance of the change of equation (3)
by adding a feature. In equation (7), n is the total number of
data points, q is the number of classes and p are the features
(dimensions) under consideration. Equation (7) is also called
F-to-enter. A corresponding F-statistics for removing a feature
is also defined (Einslein 1977):

Fremove = (n − p − q + 1)

(q − 1)
(��(p − 1) − 1). (8)

Equation (8) is called F-to-remove.
The procedure starts with the full set of all features. The

F-to-remove value is calculated for each feature and the feature
with the lowest value below a significance level is removed.
The matrices SW (4) and ST (5) are updated and the F-to-enter
value is calculated for those features which are currently not in
the feature set. The feature with the highest F-to-enter value
above a significance level is assigned to the reduced feature
set. This is repeated until no features can be added or removed.

5.2. Classification

To classify a feature vector −→x , the Bayes decision rule is used
(Duda et al 2001):

bg(
−→x ) = − 1

2

(−→x − −→µg
T
)
�−1

g ((−→x − −→µg) + log(det(�g))

(9)

where �g is the covariance matrix of the training samples of
the gth class.

The feature vector −→x is assigned to that class with the
largest Bayes value bg .

The Bayes decision rule in equation (9) can be simplified
(Einslein 1977) by the assumption that the covariance matrices
�g for all groups are identical and could be described by the
mean of all covariance matrices:

�g ≈ � = 1

n − q
SW . (10)

Then the Bayes decision rule (equation (9)) becomes

bg(
−→x ) = (−→x − 1

2
−→µg

)
�−1−→µg

T + const. (11)
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Figure 5. Lithology profile of ODP hole 1203A drilled at Detroit
Seamount, Northwest Pacific Ocean during Leg 197 (in 2001). Core
recovery and lithology based on core data and logging data are
plotted versus depth in metres below seafloor (mbsf). Distinction
between logging units is based on natural gamma ray, neutron
porosity, bulk density and resistivity measurements (after Shipboard
Scientific Party (2002)).

6. Application to ODP hole 1203A

We use FMS images from ODP hole 1203A which was
drilled at Detroit Seamount (northwest Pacific Ocean) during
ODP leg 197 (July–August 2001) (Shipboard Scientific Party
2002). Here, the volcanic basement was encountered at 457 m
below seafloor (mbsf). The borehole recovered pillow
lava, massive cores interpreted as basaltic lava flows, and
volcaniclastic intercalations. Core recovery in hole 1203A
was low (56.6%). Overview lithology profiles based on core
and logging data are shown in figure 5. Standard logging
operations included two runs of the FMS tool string. For
reconstructing the volcanic basement, we focus on the first
pass, which recorded FMS data in the basement section from
915 mbsf to 420 mbsf (Shipboard Scientific Party 2002).

6.1. Choice of texture facies

The following lithotypes could be distinguished from the
logging data: pillow lava, partly fractured massive rocks
and volcaniclastic rocks. Core data allowed distinction
of volcaniclastic units, which are composed of tephra
deposits (identified as basalt/lapilli tuff and breccia) and their
resedimented derivatives, as well as clastic sediments made
up of horizontally bedded siltstones, sandstones and mudstone
(Shipboard Scientific Party 2002). If lithologies have the same

log response (volcaniclastic sediments) but show different
patterns in the FMS image, texture logs will be of great
importance in reconstructing lithology. We assigned three
texture classes for igneous rocks according to dynamically and
statically normalized FMS images, core and logging data (see
figure 6):

Massive rocks are highly resistive and homogenous
units interrupted by conductive features continuing mostly
horizontally over all four pads. These features are interpreted
as fractures and veins cutting the borehole (training intervals:
535–539 mbsf).

Pillow lava is characterized by bright rounded regions, which
are uniformly resistive with irregular fracture patterns. Pillow
units are bounded by darker, more conductive intervals
representing the altered hyaloclastic rim and interpillow zones
(training interval: 465–491 mbsf).

Vesicular units are characterized by high resistivity with only
a few conductive patches of variable size. Core description
of vesicular basalts mentions that vesicles are partly filled
with carbonate making them resistive and do not show a clear
resistivity contrast to basaltic matrix. The classification of
vesicles is limited to conductive fillings (training intervals:
888–890 mbsf).

and three classes for volcaniclastic textures:

Breccia has a dark, mottled FMS appearance with bright
patches reflecting resistive clasts as well as brown patches
corresponding to highly conductive components within a
conductive matrix (training interval: 611–614 mbsf).

Layered sections are characterized by almost horizontal
bedding structures: highly homogenous within a layer, but
with clear contrasts across boundaries (training interval: 567–
570 mbsf).

Resedimented rock refers to tuff and has chaotic
(resedimented) patterns with a brownish background colour
due to alteration. It may also consist of unaltered basaltic glass
particles, which show up as tiny resistive patches (training
interval: 503–507 mbsf).

Note that 1000 sampling points are randomly selected
within these training intervals. All four pads are used for
sample selection. Hence, the minimum length of a training
interval is 62.5 cm for this number of sampling points
(minimum of 250 sampling points per pad = 1000 sampling
points for the sampling rate of 2.5 mm of the logging tool). We
have chosen larger training intervals due to internal variation
in rock texture. Random selection in these larger intervals
and its correct classification proved the robustness of this
classification in reliability checks prior to classification.

6.2. Results from Haralick texture features

Discriminant analysis was used first to check the calibration
reliability. Since training for each run was performed at 1000
randomly picked sample points, we did not use the entire
intervals for training. Hence, the entire training intervals were
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Figure 6. FMS texture facies assigned in ODP hole 1203A drilled at Detroit Seamount, Northwest Pacific in 2001. Core scan images give a
detailed view of the corresponding depth interval.

used for a first classification check after each run. Sampling
picking and training was performed in ten distinct runs in order
to check the reproducibility of classification. The result is
shown in figure 7. The best run out of these ten performances
was chosen to classify the entire FMS set. Stepwise linear
discriminant analysis used all texture features.

In total, 89.9% of the depth points were correctly classified
into the same texture facies as in the calibration training
class by weighting the correct classification percentage with
sampling points. The percentage of consistent classification
is above 90% for the breccia class, the fractured class and
pillow class, but is lower for the layered as well as the
resedimented class (>80%), and below 75% for the vesicular
class. However, these percentages indicate that the texture
facies can be recognized by discriminant analysis. This is a

necessary condition for classifying the remaining intervals of
Hole 1203A.

The final result of the synthetic lithology profile is called
the texture log and is displayed in figure 8. Since the
FMS sampling interval is 2.5 mm, the discriminant analysis
might yield unreasonable layers of this thickness—represented
only by one depth point. We chose a 1 m depth interval,
where the dominant class within this interval defines the
classification. Therefore, our texture profile has a resolution of
1 m. As mentioned above, the borehole caliper mainly controls
the image quality. Hence, caliper data are used to avoid
misclassifications due to washouts. If the caliper exceeds 15 in,
classification data are discarded from the texture log. The
classification was also neglected if either all four pads or both
pad pairs yielded different results (distinctive classification).
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Figure 8 illustrates that the quality of classification is mainly
controlled by caliper data. Most of the classification gaps
are caused by borehole enlargements. Only three zones
(at 600 mbsf, 650–658 mbsf, 760–768 mbsf) could not be
clearly classified. Their results were discarded from the
profile.

Overall, the texture profile and the logging facies agree
well. In particular, pillow texture units consistently occur
in both texture and logging profiles. The occurrence of
volcaniclastic classes, separated into three distinctive texture
groups, corresponds well to the core and logging data shown in
figure 5. Layered and vesicular classes only occur within
their training intervals. The 1 m profile resolution avoids
detection of smaller intercalations, which will be discussed
later. However, there is one zone that significantly differs from
the overview lithology. Within the texture profile, we classified
the depth interval between 816 and 864 mbsf as massive rock.
The logging profile defines this zone as a pillow-dominated
section. Due to this mismatch, we applied filter functions on
image data prior to texture analysis. Filtered image signals
may yield a lower misclassification for problematic texture
classes.

6.3. Filtering by wavelet transformation

Wavelet transformation was applied for filtering the FMS
image signal. Here, we used a combination of wavelet
functions (see section 4) to decompose the FMS signal.
Extensive tests showed an improvement in classification when
using a diagonal detail image derived from a Pseudocoiflet 4
wavelet combined with a vertical detail image based on a
Coiflet 2 wavelet. Both filtered sub-images increased the
feature space. Stepwise linear discriminant analysis removed

ten features from the feature space including redundant
classification information.

The performance matrix of the reliability check is
displayed in figure 9. It shows higher classification consistency
than the Haralick-based classification. In total, 98.0% of
the depth points were correctly classified. This classification
result reveals the percentage of all correctly classified sampling
points out of all data points in all sampling intervals. The high
number is mainly achieved by the almost 100% classification
of the long pillow training interval. Except for breccia, all
classes increased their level of correct classification. Due to
the application of wavelet filtering, we particularly improved
classification for the vesicular rock class, the most problematic
class of the previous Haralick classification. On average 86.9%
was correctly classified in contrast to the previous Haralick
classification (only 72.2%; compare figures 9 and 7). For the
run we applied on FMS images, we even correctly classified
94.9% of the training interval (black bars in figure 9), that is,
a classification improvement of 18%. We also significantly
increased correct classification for resedimented rock facies
from 82.1% to 94.3%. Improved reliability checks increase
confidence in the robustness of our discriminant analysis. The
robustness was proven by five repeated measurements. Their
average classification results are displayed as grey shaded bars
in the performance matrix (see figure 9).

This new linear discriminant function was again applied
to the first FMS run of ODP hole 1203A. The resulting
profile is displayed in figure 8. It is seen that wavelet-based
Haralick classification changed the massive classification to
pillow classification. The reliability check shows that the
classification of pillow and massive classes improved from
Haralick-based classification to wavelet-filtered classification
and is about 100%. It also shows that the gap below 750 mbsf
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Figure 10. The left-hand side shows an overview of lithology
derived from a 1 m resolution. The right-hand side shows the
detailed texture log of two sections, where the resolution was set to
2.5 mm (tool sampling rate). It shows that dominant classes such as
pillow and massive units are built up of interpillow material,
vesicular zones and volcaniclastic intercalations.

from Haralick classification (see section 6.2) disappeared. The
wavelet transformation improved the determination of layered
and resedimented tuff classes too.

6.4. Quantification of rock classes derived from conventional
logging, core recovery and FMS image data

Since we improved the total classification by application of
wavelet filtering prior to Haralick feature generation, we
discuss the quantification of the computed classes in more
detail. The chosen resolution of 1 m is sufficient to obtain an
overview lithology. However, the volcaniclastic rock classes
may occur in layers thinner than 1 m or as filling material
between pillows. To test this, we increase the resolution
to improve the quantification of rock types especially for
interpillow material and intercalations. Figure 10 shows two
detailed sections representing classification results based on a
2.5 mm sampling rate. The dominant rock class of the 1 m
intervals was taken for the overview lithology. The detailed
classification reveals thinner intercalations of volcaniclastic
material such as breccia, resedimented structures in massive-
and pillow-dominated 1 m intervals as well as vesicular
intercalations in pillow units.

The upper detail log between 706 and 707 mbsf may
correspond to cores 197-1203A-45R-2, 197-1203A-45R-3 and

197-1203A-45R-4. The low core recovery of 56.6% (see
above) makes it difficult to fit core and logging data exactly.
These cores recovered in the depth interval between 704.6 and
708.8 mbsf are described as moderately olivine-phyric basalt
with some glassy lobe margins. In the lobe interiors the
core is fine grained and glassy lobe margins are replaced by
dark green clay. There is brecciation of glassy lobe margins
between lobes. The morphologies of the upper core (45R-2)
suggest this core section is part of a subaerial pahoehoe flow
(Shipboard Scientific Party 2002). These core observations
agree with the detailed texture log in this depth interval. The
upper section was predominately classified as massive flow,
whereas the lower part was mainly classified as pillow. The
brecciation and alteration of glassy lobe margins is expressed
by tiny intercalations of the breccia and resedimented texture
rock class. The core description and detailed texture profile
agree well. The lower detail log between 843 and 844 mbsf
shows a texture log section dominated by pillow classification
with an intercalation of vesicular rocks. In corresponding
cores 197-1203A-61R-3 and 62R-1 between 840.65 and
848.9 mbsf (poor recovery) rock structures are described as
lobed. Fine-grained material is moderately to highly versicular
with a patchy vesicle distribution (Shipboard Scientific Party
2002). This core description agrees with our texture
classification.

The detailed texture log was confirmed by corresponding
core description. What is then the result of an overall
comparison of class quantities between conventional logging
data, recovered cores and image texture analysis? The exact
quantity of interpillow material and intercalations in oceanic
lithosphere is still a subject of debate and therefore was derived
based on the classification resolution of the sampling rate of
2.5 mm. Diagrams in figure 11 present quantitative estimates
of diverse rock classes derived from the three sources of
information: conventional logging data, core recovery and
image texture logs.

Conventional logging data were roughly grouped into
three classes by the Leg 197 ODP Logging Staff scientists.
They provide continuous information with a sampling interval
of 15 cm (6 inch) (Goldberg 1997) and allow distinction
between volcaniclastics (34%), pillow units (57%) and
massive rock classes (9%). The diagram derived from
conventional logging data in figure 11 shows that pillows
are the main rock type of this borehole. Core recovery
was low (56.6%, see above). However, the quantity of
volcaniclastic rocks (30%) derived from core data is close
to that from logging data (see figure 11). The analysis of
cores separated volcaniclastic rocks into breccia (5%), layered
materials (13%) and resedimented rocks (12%). For igneous
rocks a distinction is made between vesicular (27%), pillow
(20%) and massive rock (23%) classes. Igneous rocks are more
or less equally distributed based on core data. FMS image
data record borehole wall resistivity with a sampling interval
of 2.5 mm (0.1 inch) (Goldberg 1997) and provide continuous
and high-resolution information. Images allowed a distinction
between the following three volcaniclastic units to be made:
breccia (13%), layered (6%) and resedimented (16%). In
total, 35% of the data are classified into volcaniclastic units
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(see figure 11), in excellent agreement with logging data
analysis (30%), but with the additional advantage of yielding
more detailed information on the variety of volcaniclastic
rocks. Igneous rocks covered 65% of the texture classification.
In detail, 21% was assigned to massive units, 35% to pillows
and 9% to vesicular units. Here, the pillow is also the
dominant rock class of the texture classification. There are
slight differences between conventional log and image texture
classification. First, conventional logging data have been
roughly summarized by the ODP Logging Staff scientist and
show a different resolution and the fewest groups. It represents
more or less a rough estimate of class quantities. Core data
estimates present slightly different amounts of breccia, layered
units, pillows and vesicular rocks. The question arises now
whether this estimate is reliable since it is only based on poor
core recovery. It could be that vesicular rocks recovered
in this hole would have been classified as pillows if their
hyaloclastic rim was recovered as well. However, for the most
important information, the quantity of volcaniclastic material
and igneous rocks, there is excellent agreement between all
methods applied to ODP hole 1203A.

7. Summary and conclusions

We successfully performed the transformation of images in
quantitative log curves applying pattern recognition analysis.
Hence, this transformation allows us to perform an objective
classification of FMS borehole wall images acquired in ODP
hole 1203A. We applied texture analysis to study second-order
image parameters defined as Haralick features. Within training
intervals, we defined texture classes for igneous rocks as

massive rocks, pillows and vesicular units; volcaniclastic rocks
were classified as breccia, layered rocks and resedimented
units. Stepwise linear discriminant analysis was used to
distinguish between rock classes based on computed texture
features. The Bayesian decision rule was applied to classify
borehole wall images. Caliper data acquired with the FMS
tool are used for quality control: if the diameter exceeds
15 inches and no dominant pad classification could be
obtained, classification results are discarded from the texture
profile. Results based on Haralick texture features agree
well with the lithology derived from standard logging data.
Below 800 mbsf, logging and texture profiles disagree
strongly. Image filtering was implemented by a single-
level decomposition applying wavelet transformation. Here,
detailed images obtained by the Pseudocoiflet 4 (diagonal)
and the Coiflet 2 wavelets (vertical) enhance the directional
image information. Then texture analysis was applied yielding
an improved classification for the defined rock classes. A
synthetic profile resulting from a combination of wavelet-
transformed images agrees well with the logging-based profile.
Comparison of rock classes between conventional logging
data, recovered core data and image texture data reveals an
excellent agreement with respect to the estimated quantity
of volcaniclastic material and igneous rocks. Application
of pattern recognition analysis allows us to transform image
patterns into signals. Application of pattern recognition
techniques permits an objective analysis of digital borehole
wall images. Texture analysis allows us to classify image
data based on statistics of the digital image data. It offers the
potential to facilitate objective analysis of multiple boreholes
with the same lithology.
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