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We all realize that our evaluations can be no better than the data, and model, allow. At the
simplest level we often select Optimistic, Expected and Pessimistic parameter estimates, and
bound the result accordingly.

It is, however, relatively simple to address the uncertainty question in a more comprehensive,
guantitative fashion, and better identify where to focus time, and money, in search of an
improved evaluation.

As carbonate (rather than shaly sand) petrophysicists, our Sw estimates are typically
compromised by uncertainty in the Archie equation attributes.
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By taking the derivative of Archie’s equation (the same approach will suffice for a shaly sand
equation), one is able to quantify the individual impact of each term upon the result, and thus
recognize where the biggest bang for the buck, in terms of a core analyses program or suite of
potential logs, is to be found (Figure 1).
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Issues

We've all worked Fields for which we had high confidence in R, but that is not always the case.
Rw is the first example of an important input parameter, which is usually subject to (at least
some) uncertainty.

In some (certain areas of the Shuaiba, for example: Ballay, 2001) reservoirs, mineralogy is
nearly uniform, and hence well known. In other (probably most) locales, uncertainty exists in
this basic information, which will carry through to porosity. Furthermore, one may be faced
with three minerals (limestone — dolostone — anhydrite) and only two logging tools (density-
neutron), with anhydrite present as obvious nodules, or as (more subtle) cement

Porosity is often thought of as +/- “x” pu of uncertainty, but in actual fact the uncertainty is
mineral composition dependent, and may also be a function of the amount of porosity present
(some measurements are more accurate at high porosity, and vice versa). Uncertainty is
compounded by tool type, era (old versus modern) and borehole conditions. Additionally
(Adams, 2005 & Denney, 2005), uncertainty ranges should recognize the possibility of an
inappropriate model.

Mud resistivity (and hence borehole effects) may change from one well to the next, indeed one
logging interval to the next. The 6FF40, as an example, has a Skin Effect limitation at the low
resistivity end (~ 1 ohm-m), and a signal-to-noise limitation at high resistivity (~100 ohm-m).
Mud filtrate invasion, parallel (induction) versus series (laterolog) circuit issues, vertical tool
resolution, etc compound the uncertainty in resistivity. There are a number of inter-related
issues, with additional details to be found in George (2003).

How many of us have ever been “really sure” of our ‘m” and ‘n’ exponents? Focke and Munn
(1987) nicely illustrate the dependence of ‘m’ upon carbonate pore geometry, while ‘n’ is
controlled by wettability (Sweeny & Jennings, 1960) and surface roughness (Diederix, 1982). In
carbonates, wettability (and hence “n”) may vary with pore size (Chardac et al, 1997), and
present an additional challenge, particularly in the transition zone.

Sw(Archie) involves the combination of all these attributes, and their respective uncertainties.
Is it any wonder that “one size may not fit all feet”?

Einstein advised us to ‘keep it as simple as possible, but no simpler’. With this in mind we
estimate the uncertainty upon the Sw estimate, resulting from the individual attributes, in a
deterministic form, which can be easily coded into spreadsheet, or petrophysical s/w.

The Derivative

| always appreciate my geology friends providing me with supplemental details, and so given
the wide backgrounds going into this question, it’s worthwhile defining, and illustrating, what
the (calculus) derivative, which is fundamental to this issue, represents.

Differentiation is the mathematical technique for characterizing the rate at which a dependent
variable (say “y”) changes, as some independent variable (say “x”) changes: the rate of that
change is known as the derivative. As a specific example, velocity is the (derivative) rate of
change of position, and acceleration is the (derivative) rate of change of velocity.
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At the simplest, linear level
y=m*x+b
with ‘m’ the slope and ‘b’ the intercept. When ‘x’ changes by some Ax, ‘y’ changes by Ay,
according to the following.
y+Ay=m?=* (x+Ax) +b=y+ m Ax

where we have inserted the relation y = m * x + b. The derivative of ‘y’, or the rate of change in
‘v’ as ‘x’ changes, is then ‘m’.

In the case of Sw(Archie) estimates, there are multiple independent attributes, and one then
resorts to ‘partial’ derivatives, which sum to characterize the total variation of the dependent
estimate, as a function of the individual partial derivatives.

Additional details, and illustrations, are to be found at the below link.
http://en.wikipedia.org/wiki/Derivative_(calculus)
http://en.wikipedia.org/wiki/lIssac_Newton
Propagation of Error

Each of the Sw input attributes has a Best Estimate value, and an associated uncertainty
distribution. The individual uncertainties ‘propagate’ through to the composite result
according to a specific protocol: http://en.wikipedia.org/wiki/Propagation_of uncertainty. The
uncertainty of each parameter may be characterized by the respective standard deviation (o),
which is the positive square root of the variance [(c4)?]. As an example, the 68% confidence
limits of a normally (bell-shaped) distributed variable ‘x’, are x +/- o,.

In general, the uncertainty in ‘y’, which is some function of variables x; = x,,, is
(6,)° = = [ (dy / dx) o ]*

where the partial derivative of y, with respect to x;, is represented by dy / dx;, rather than the
mathematically correct symbol, so as to minimize the need for special word processor symbols.
See the Wikipedia reference, above, for more background information and the correct
symbolism; there are additional mathematical details in Appendix V of the Mechanics Lab
Manual, Case Western Reserve University (available on-line): Uncertainty and Error
Propagation.

As a specific example of error propagation, Ohm’s Law relates Resistance (R), Voltage (V) and
Current (1) as

R=V/I

Measurement of both “V” and “I” are subject to uncertainty, which propagates through to
“R”, according to (as above)

AR? = (AV / 1)2 + (V Al / 17)?
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Relative Uncertainty in Sw(Archie) Estimates

With an understanding of what the derivative means, and how individual uncertainties
propagate, we proceed to determine the contribution of specific parameter uncertainties, to
an S, estimate. Those not interested in details may skip the following and go direct to Figure 2.

Sw=[Ru/(®™R)] Un_ g, ¥ 0 m/n g, -/

Differentiating Sy with respect to Ry, ¢, and R is straight-forward differentials, and yields
Rw partial derivative : (1/n) [R, " Y ¢ ™" R, "1 S,/ (nRy)

¢ partial derivative : (- m/n) [ Ry, n oF m/-UR Y"1 -mS,/(n )
R. partial derivative : (- 1/n) [Ry "¢ ™" R, Y] D -5,/ (n Ry

If an ‘@’ parameter is (locally) used in the Archie relation {ie Sy =[aRw /(¢ " Ry) ] 1/”}, we

recognize that its behavior is functionally similar to Ry, and the ‘a’ dependence is determined
by analogy to the R,, expression.

The exponential dependence of S,,(Archie) upon “m” and “n” requires additional
differentiation protocols, as follows.

Differentiation of Natural Logarithms; consider a function f(x)
fx)=x>+x+1
The derivative of the natural logarithm of that function is
d [In f(x) 1/dx = f’(x) / f(x)
As an illustration
d {In[x* + x + 1] Y/dx = {d [X* + x + 11/dx } / {x* + x + 1}
d {Inp® +x + 1] Ydx = {2x + 1} / {x* + x + 1}
The Chain Rule for Differentiation; consider a function f(u) , wherein “u” is some function of “x”
The derivative of f(u) with respect to “x” is (per the Chain Rule)
df(u) /dx=[df(u)/du][du/dx]

As an illustration

y=f(u)=4(2x-7)=4uwithu=2x-7

dy/dx=[dy/du][du/dx]=4%*2=8

Implicit Differentiation; some mathematical relations involve an implicit relation, wherein the
variable (or dependence) of interest is not expressed as a function of all other attributes. The
dependence is "implicit"

Consider, for example, the equation of a circle, and for illustration purposes perform both
explicit and implicit differentiation

x> +y?=25
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Explicitly (for reference)
y=+/-[25-x "2
dy/dx = (+/-) x / [25 - x*] 2
As an example of implicit differentiation, take the derivative without explicitly solving for "y"
x> +y’> =25
Let f(x) =y, so that f 2(x) = y2 =25-x°
Implicitly (for illustration)
d[f 2 (x) 1/dx = 2 f(x) [df(x)/dx]
Solve the above relation for df(x)/dx to find the following
dy/dx = {d[f*(x) [/dx }/ [2 f(x)] =
(+/-)[2x1/{2[25-%1 "} =x/[25-x *

which is the same result as found with explicit differentiation in the preceding exhibit (thereby
validating the implicit relation, which we will need below).

Drawing upon the preceding differentiation rules, determine the effect of ‘n’ on Sw
uncertainty as follows (remember, to simplify the word processor notation, d/dx symbolizes
partial differentiation)

d[Inf(x)/dx] = [df(x)/dx] / f(x) => df(x)/dx = f(x) d[Inf(x)/dx]
Sw=[Ru/ (0™ Ry
In(Sw) = (1/n) In [Rw/ (6 "R 1=uIn[Ry/ (¢ ™Re) ] where u=1/n
dS,./dn = (dS,/du) (du/dn) = (Sy) In[ Ry / (6 ™ Rt) ] (-1/n?)
Recognizing that In[ R, / (¢ ™ R;) ] (-1/n%) = (-1/n)In[Sw], one is left with
dSy/dn = (Sw)[(-1/n)In(Sw)]
Differentiating with respect to ‘n’ yields the effect of ‘m’ on S,, uncertainty
d[Inf(x)/dx] = [df(x)/dx] / f(x) => df(x)/dx = f(x) d[Inf(x)/dx]
Sw=[Ru/ ("R
IN(Sw) =IN[Rw/Re1Y " +In[d ™1 "=In[Ru/Re]Y"-(m/n)In[ ]
In(Sw) = In [Rw/Re1 Y™ -uln[¢]where u=m/n
dS,/dm = (dSy/du) (du/dm) = (Sw) In[$ ] (-1/n)

In addition to Chen (1986) and Bowers (2000), Carlos Torres-Verdin points out that Philippe
Theys has investigated this issue as a topic in a book, and George Eden of BP Canada brought to
my attention Burnie’s 2004 article, which is also ‘worth the read’. For our shaly sand colleagues,
uncertainty in Sw(Shaly Sand) has been examined by Freedman (1985).
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Recalling that the uncertainty in ‘y’, which is some function of variables x; = x,, is a result of
propagating errors, according to

(6,)* =2 [ (dy / dx;) ox; ]*
we are now able to quantify the uncertainty in S,, and the role that ‘a’, Ry, ¢, ‘m’, ‘n’ and R;
are playing, by squaring and summing the above partial derivatives, multiplied by their
individual standard deviations. The relative uncertainty, one parameter to the next is simply
the individual partial derivative multiplied by the respective standard deviation, squared.

Following Chen (1986) the respective uncertainties are thought of as percentage wise
specifications (“y%” in Chen’s notation, in general unique for each attribute, but uniformly
symbolized as y% in the notation).

dSy / dRy = Sw/ (n * Ry)
(dSw / dRw)” (0Rw)* = (Sw/ n)* [( oRw )/ Rwl* = (Sw/ n)* [( y% Ru) / Rwl* = (Sw/ n)* (%)’
dS,/da=S,/(n*a)
(dSw / da)* (ca)* = (Sw/ n)* [(ca )/ al* = (Sw/ n)* [(y% a) / @)’ = (Sw/ n)” (y%)*
dSy / dR¢ = Sw/ (N * Ry)
(dSw / dRy)* (6Re)* = (Sw/ n)* [( oR: )/ Red® = (Sw/ n)* [( y% Re) / R® = (Sw/ n)? (v%)*
dS, /ddp=-mS,/(nd)
(dSw / d9)? (59)* = (Sw/ n)* [m (56 )/ ¢1* = (Sw/ n)* [m (y% &) / §1* = (Sw/ n)* (m y%)*
dSw/dm = (Sy) In[¢] (-1/n)
(dSw / dm)* (om)? = (Sw/ n)? [In($) ( om )1 = (Sw/ n)* [In(9)( y% m)])* = (Sw/ n)* [m In(¢) y%)]*
dS./dn = (Sw) In(Sw) (-1/n)
(dSw / dn)? (on)? = (Sw/ n)* [In(Sw) (o1 )]* = (Sw/ n)* (IN(Sw)( y% n)]* = (Sw/ n)” [n In(Sw) y%)]°

Remember, in the symbolism, uncertainty for each attribute is written simply as y%, but the
specific value is in general unique to each parameter.

Each of the terms share the (Sw/ n)? prefix; dropping this results in the relative magnitudes of
the various components, as follows (again, using Chen’s notation, and keeping in mind that in
general, the individual y% have different specific values).

C(Rw) = (y%)’
C(a) = (y%)®
C(Ry) = (y%)’
C(9) = (m y%)*
C(m) = [m In(9) y%)1*
C(n) = [n In(Sw) y%)]*
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For complete clarity
and comparison,
Chen’s 1986
definitions appear in
Figure 2.

These equations
reveal that ‘a’, Ry and
R: are dependent
upon only their
respective
uncertainties, whereas
¢, ‘m’ and ‘n’ involve
other attributes.
When the respective
uncertainties are
equal, one then has
c(¢) > C(Ru), C(a),
C(R:) simply because
‘m’ > 1: Figure 3. In
such a situation, time
and money are better
spent on improved
porosity estimates,
rather than ‘a’, R,, or
R:.

Because the relative
uncertainty in ‘m’ and
‘n’ involves the
(square of a) natural
logarithm, the
behavior is more
complicated, and
involves an inflection
point: Figure 4.
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In general each attribute
will have an individual
uncertainty. For illustrative
purposes, and to maintain
contact with Chen (1986),
consider the following.

e “3d"=1.0,v,=0%

* Rw=0.02, ypy =4.4%
* Ri=40,yre=1%

*  Phi=0.20, yphi = 15%
* "Mm“=2.0,yn=10%
e “n”=2.0,y,=5%

A spreadsheet formulation
(Figure 1) allows one to not

Figure 4

*Because Ln(0.367) = -1, both C(m) and
C(n) exhibit inflection points
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only easily perform the calculations, but to also consider what the effect of a change in
reservoir quality (porosity) would mean (because the importance of ‘m’ and ‘n’ is linked to
porosity), with locally specific values.

At 20 pu formation evaluation, with the above conditions, should focus on improved porosity
and ‘m’ estimates, with ‘n’ of relatively less importance. If porosity rises to 30 pu, however,
improved porosity estimates become more important with ‘m’ and ‘n’ having similar, and less,
impact. As porosity drops below 20 pu, it is the pore connectivity (‘m’) that begins to dominate

the accuracy.

If the water were Figure 5 Lioht s Cotle e calculsio reauts Relative Contribution To Sw Uncertainty
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Yet more details and
variations are to be
found in Chen & Fang
(1986); coding the
equations to a
spreadsheet will
allow application of
the concept to locally
specific conditions.
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Deterministic vs Probabilistic

Bowers & Fitz (2003) have extended Chen & Fang’s work to include Sw(Dual Water), and have
additionally made comparisons of the deterministic results to Monte Carlo Simulations.

The two basic ways in which to approach the issue are with an equation (the analytical, or
deterministic, method) and with a statistical (Monte Carlo) simulation. Each has strengths and
weaknesses.

The analytical approach results in relatively simple equations that may be coded into a
spreadsheet, or most any petrophysical s/w package. With these equations one may quickly
identify the key issues for any specific situation.
e Planning (and allocating money for) a core analysis program.
e Foot-by-foot petrophysical interpretation, across a range of formation qualities and
conditions.

Implicit in the deterministic method is that of a bell-shaped (Gaussian, or Normal) distribution.
In actual fact, naturally occurring phenomena may in fact exhibit a different (non-Gaussian)
distribution: Limpert, et al (2001).

Excel, and a variety of statistical packages, offer alternative distributions which may be used as
input to the S,, calculation (Archie, or otherwise). Repeating the calculation multiple times with
random selections from the various, specific input distributions (porosity, ‘m’, ‘n’, etc) will yield
an output distribution, which may then be examined for characterization of the resulting
uncertainty.

Normality

Many routine statistical analyses are based upon the assumption of a ‘normal’ or ‘Gaussian’
distribution, and while this is a reasonable starting point, we also realize that it’s not
necessarily the actual distribution.

The implications of actual versus assumed distribution are addressed by Hill & Lewicki (2007)
who point out that in many cases a normal distribution-based test can be utilized if one simply
ensures that the size of the sample population is sufficiently large. This conclusion is based on
the principle which is largely responsible for the popularity of tests that are based on the
normal function: as the sample size increases, the shape of the sampling distribution
(distribution of a statistic from the sample) approaches normal, even if the distribution of the
variable in question is not normal.

Hill & Lewicki illustrate the concept with an animation showing a series of sampling
distributions (created with gradually increasing sample sizes) based upon a variable that is
clearly non-normal (distribution of values is skewed). As the sample size increases, the shape of
the sampling distribution becomes normal and at n ~ 30, the shape of that distribution is
"almost" perfectly normal (http://www.statsoft.com/textbook/stathome.html). The principle is
called the central limit theorem, and the StatSoft site is well worth taking a look at.
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Monte Carlo Evaluation

Monte Carlo evaluation is based upon repeated random sampling of the various user-specified
input distributions, which are then used to calculate a composite result. It’s a particularly
attractive approach when it is infeasible or impossible to compute an exact result with a
deterministic algorithm.

Each of the individual input attributes (Ry, Phi, ‘m’, etc) can be represented by the appropriate
Best Estimate value, encompassed by a distribution of associated Possible values, according to
the appropriate user-specified distribution (Gaussian, Square, Triangular, Log Normal, etc). The
individual, randomly selected results for Ry, Phi, ‘m’, etc are input to the Sw calculation,
multiple times, and the resulting most likely value, and uncertainty distribution, determined.

While there are a number of commercial Excel-based Monte Carlo simulators, it’s also straight-
forward to custom code a specific application, from scratch. This option will be dealt with in our
next article: Rolling The Dice.

Dealing With Risk

With a rigorous mathematical relation in hand, we are now able to quantitatively estimate the
uncertainty in the ultimate S,, estimate, once we characterize the individual input parameter
uncertainties. This parameter specification is itself, a challenge, and again subject to that
original qualification of ‘one size does not fit all feet’.

At the simplest level, repeat core analyses can be drawn upon; Hook (1983), thank you to
George Eden, BP Canada, for bringing this article to my attention. Voss (1998) comments on
determination of uncertainty ranges as does Bowers (2003). Summary points include
* Asingle interpreter should avoid making estimates on their own.
* Asingle interpreter often lacks the needed knowledge to correctly estimate
every parameter.
* In addition, many interpreters have a bias that smaller errors are better and they
will appear more knowledgeable about the subject.
* The error must reflect the level of knowledge about the parameters and the data
quality.
e A standard set of uncertainty ranges must be avoided because there is no standard
situation in which to apply them.
* Unusual events also pose special problems.
* Most people have a better recall of unusual events
e Therefore a tendency to overestimate the probability of such an event
e Especially if that event occurred recently
e Another very common mistake is to allow a very small amount of data to quantify the
range of uncertainty
* If data sets are small, the ranges probably need to be increased.
* Boundary Conditions
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e Water saturation must lie between zero and one
e If the saturation values are too large or too small, the "best guesses” and ranges
must be reconsidered and calculations remade.
* The final and probably most difficult problem to overcome is the culture and
preconceived ideas of an organization.
e Methods and ranges of uncertainty applied to any analysis must be questioned
every time they are applied.
We should not lose sight of the fact that the porosity estimate is the result of a transform,
which itself involves uncertainty (remember that old phrase, the devil is in the details?).
Likewise, the S,, model involves basic assumptions. For example, if clay conductivity is an issue,
an Sw(Archie) evaluation has been immediately compromised.

In the carbonate world, as compared to clastic, clay is much less commonly a problem but dual
porosity systems, particularly in the transition zone, can challenge the Archie equation
electrical circuit model: Griffiths et al (2006), Figure 6. High in the oil column, or gas wells in
general, increased capillary pressure will cause the hydrocarbon to more efficiently displace the
brine, and the magnitude of the problem diminishes.

Carlos Torres-Verdin

*Carbonate pore structure is complex with a wide 000 429 430440 430 450 A 480
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due to post-processing of the oil, a portion of the meso-pores are likely to
techniques (e g become oil charged.
i *While the Archie equation has had tremendous
deconvolution) could be success, there are limitations in carbonates _ e
more detrimental to *One of the critical assumptions typically made is icru‘pu-ms
. that the measure current moves uniformly through Mos0-Doras
uncertainty than the formation e
Macro-pores
Archie's parameters. The *The presence of water-filled micro-pores in close
. i proximity to the larger hydrocarbon-filled pores

Most conspicuous cases is may short-circuit the resistivity measure currents
the one of a thin, *This causes the oil saturation to be under-estimated
hydrocarbon-saturated Figure 6
bed, where bed thickness o _ \,/“

Estimating S,, with a volume measurement P 1 I - -~
and invasion can give you R. Griffiths, A. Carnegie, A. Gyllensten, M. T. Ribeiro, A. =y | 3

Prasodjo, and Y. Sallam. World Oil, October 2006 | AN

much more uncertainty
grief than Archie's parameters”.
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Finally, there is always the possibility Good Luck can save the day. As a young man just home
from the Army, and attending Missouri State University, three men stimulated my interest in
Physics and Applied Mathematics. In the intervening 40 years, I've often thought of how very
lucky 1 was to have my path, cross theirs.

e Banks, Dr Larry

e Schmidt, Dr Bruno

e Sun, Dr Woodrow
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