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MACHINE LEARNING ALGORITHMS APPLICATIONS IN SEISMIC AND PETROPHYSICAL ANALYSIS 
 
 
Part 2 :      NON-LINEAR HYPOTHESES IN SEISMIC AND PETROPHYSICAL SYSTEMS 
 
 
 
Unless we have formations with homogeneous and isotropic textures and mineral systems 
and same spatial properties for geological architectures we will encounter non-linear 
relations between input and target attributes. This is the normal situation in all seismic and 
petrophysical problems. This issue could trigger a discussion on geostatistical methods in 
which local properties can always be abstracted from the macrosystem and assume a 
linear simulation behavior. 
 
Non-linear systems in geophysics are used for classification and mapping. 
We can have binary and multiclass classification (where multiclass classification can also be  
fed into an output database for discrete parametric quantification). 
Logistic operators build up basic units that can be extended into neural systems which can  
learn most complex non-linear hypotheses. 
 
In critical problems encountered in geophysics it is important to fill database of interpretation 
parameters where measurements are not available.  For instance the calculation of a target log  
from other input logs, the calculation and spatial distribution of petrophysical properties in the 
seismic attributes volume. 
 
Classification is extremely important for reservoir characterization. 
Binary classification can predict a formation based on an input of petrophysical, seismic  
attributes with eventual addition of geological and structural constraints. 
Multiclass classification can discriminate between target formations or attributes based on  
inputs of measured parameters and calculated petrophysical and seismic attributes. 
 
Classification is a probabilistic quantification that an event will be verified. 
The convention is that an output will be positive when equal to 1 , or negative when equal to 0. 
 
For theses issues the transition from linear into non-linear regression is a main step for further 
development of algorithms to compute complex features and learn the behavior of a geological 
system. 
 



 
Originally classification problems were solved by linear regression, for instance distributing a  
sample dataset of a single feature and computing the linear hypothesis which minimizes the  
cost function, obtaining the slope of the regression line. Then choosing the point  y= 0.5 as 
discriminating point between 0 and 1. 
As a very simplified example we could think  x = Shy/Sw  and  y = Prob (Pay) for oil exploration 
 or for deep geothermal reservoirs  x = Flow Rate  and   y = Prob (5 MWatt)   (Fig. 1). 
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However using this solution the results could be altered by the presence of outliers   (  * ) 

which can not be discarded and have to be included. 
 
The solution to this problem consists in minimizing the weight of outliers. 
Therefore a new hypothesis function has to be used that will cover values of x between   – ∞ 
 and  + ∞    :    -∞ < x  < +∞   and y between  0 and 1  :     0 < y < 1  , defining y as probability that 
the event x will be verified. 
   
This problem can be solved by using a sigmoid or logistic function of equation : 
 
 
Eq. 1 
 
 

g  𝑧  =  
1

1+ 𝑒−𝑧    

 
 
where: 
 
 

Z  =  θ𝑇x  
 
 



 
which can be also written as : 
 
 

g  𝑧  =  
1

1+ 𝑒− θ𝑇x   
 

 
 
 
then the hypothesis of the logistic regression for classification is: 
 

          
h 𝜃  𝐿OG  (𝑥)   =   g  𝑧  
 
 
Where the subscript LOG means that hq  is not a linear hypothesis but a logistic hypothesis. 
 
The graphic of the sigmoid or logistic function is shown in Fig. 2 . 
 
The logistic equation maps the linear regression including and minimizing outliers effect 
into the probabilistic sigmoid function. 
 
 
 
 

 
Fig 2 
 
 
The use of a logistic function transforms a linear regression into a probabilistic output in which 

the sigmoid function is the new hypothesis that produces a probabilistic output  P( y = 1|𝑥;  ) : 

P = probability that y = 1  given x parametrized by  . 
 

P( y = 1|𝑥;  )      where          P(y = 1 |𝑥;   )  +  P( y = 0 | 𝑥;    ) =  1   
 
 
 



OBJECTIVE FUNCTION 
 
 
If we used the same cost (objective) function as in the linear regression,  then due to the  
exponential term at the denominator we would get a non-convex function behavior, and the  
search of a minimum point would not be possible (Fig 3) . 
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Therefore a new cost function derived from the sigmoid presenting a convex  behavior have to be 
used (Eq. 4) . 
 
 
Eq.  4 
 

J 𝜃   =  -  
1

𝑚
   [    𝑦 𝑖  log  hθ(𝑥(i)) + ( 1 − 𝑦 𝑖  𝑚

𝑖=1
)                           

                                                log  ( 1 − hθ(𝑥(i)))  ]     
 
 
 
This is the standard  cost function of the logistic regression, 
where m  is the number of training samples, (i)  is the index of the ith training sample for one 
 feature, x is the input attribute and y the target. 
 
 

 J 𝜃     is equivalent to the equation 5 : 

 
 
 



Eq. 5 
 
 

 −log  h  θ(𝑥(i))        if y=1 

                                                                          J 𝜃      
−log  ( 1 − hθ(𝑥(i)))        if y=0 

 
 
 
In fact substituting y=1 or y=0 to Eq. 4 we get the respective solution of Eq. 5 
 
This function  has the property of being convex and its graphic assumes two different aspects 
depending on the value of y. 
 
For   y =1    the function presents a concavity in the right direction ( Fig. 4). 
 
For   y =0    the function presents a concavity in the left direction ( Fig. 5). 
 
 

h  θ  (𝑥(i))     is  the hypothesis of the logistic function. 
 
 
 

 
 
Fig 4  
 
 
 

 
 
Fig. 5 
 
 
 
 
 



The extension of logistic regression are logical systems which can learn from a training set and 
compute complex non-linear hypotheses that can predict the behavior of geological systems. 
 
Logistic regression units are standard building blocks of neural networks layers. 
Each neural unit is a logistic regression operator which is a decision-maker for the next input layer. 
The decision will be constrained in the input layer and in the output layer by the training set during 
the learning phase, but the learning logic and solution of a learning process is enclosed into the 

parameters (or weights)  . 
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