


INTRODUCTION TO GEOTHERMAL AND PETROLEUM EXPLORATION

J.R. Fanchi , A. Piasentini

28 July – 03 August 2014

GeoNeurale - Munich

INTRODUCTION TO GEOTHERMAL AND PETROLEUM EXPLORATION

J.R. Fanchi , A. Piasentin

28 July – 03 August 2014

GeoNeurale – Munich

Registration Deadline: 25 June 2014

7 DAYS COURSE

INSTRUCTORS: J. R. Fanchi, A. Piasentin

A BASIC COURSE FOR GEOTHERMAL PROFESSIONALS

AUDIENCE: geologists, engineers, managers, economists, insurance brokers for geothermal projects, investors, political authorities. This course is particularly suited for geothermal professionals and authorities involved in decision-making responsibilities wishing to deepen their knowledge and understanding of geothermal and petroleum exploration systems. Any individual planning to enter into the deep geothermal exploration business.

LEVEL: Basic

PROPEDEUTICAL:

Basic mathematics and physics. No previous knowledge of reservoir technologies is required. All concepts are introduced schematically with images and conceptually simple without extensive use of complex mathematical concepts.

COURSE FEES: 3650 Euro + 19% VAT (Non german private companies can be exempted from VAT tax)

ONLINE REGISTRATION: www.GeoNeurale.com

COURSE PROGRAM IN ENGLISH

The course material will be in english.

Most of the technical dictionary terminology will be in english as normative of the international conventions.

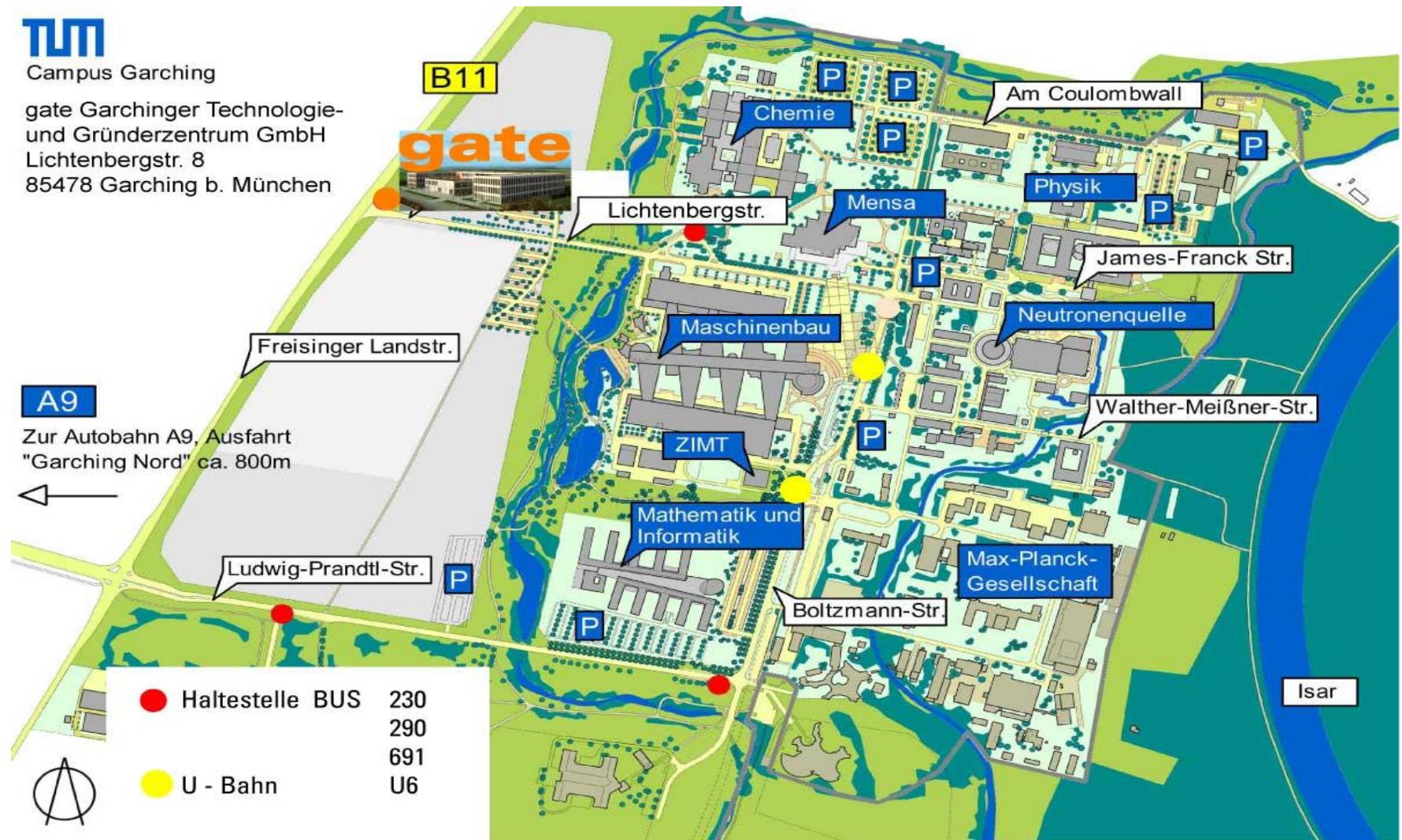
The course can be offered also in the following languages:
German, French, Italian.

Course material comprises books, DVD's videos and animations.

COURSE PREPARATION

Online Propedeutical course preparation is available at request and comprises the following topics:

- Basic Algorithms
- Introductory elements of Petrophysics
- Introductory elements of Seismology


gate GeoNeurale Training Center

at the Munich-Garching Research Center

Campus Garching

gate Garchinger Technologie-
und Gründerzentrum GmbH
Lichtenbergstr. 8
85478 Garching b. München

SHORT COURSE PROGRAM

PLANNING A GEOTHERMAL EXPLORATION PROJECT AND TECHNOLOGIES OF THE PETROLEUM INDUSTRY

SHORT PROGRAM INDEX

THE STUDIES

THE MACRO-FIELD

REGIONAL STUDIES

GEOPHYSICAL PROSPECTING

SEISMIC EXPLORATION

AQUSITION

ANALYSIS:

PROCESSING

INVERSION

INTERPRETATION

PETROPHYSICS

THE MICRO FIELD

PHYSICS OF THE TOOLS AND MEASUREMENTS

LOG-INTERPRETATION

UPSCALING

RESERVOIR ANALYSIS

INTEGRATED STUDIES

RESERVOIR CHARACTERISATION

STATIC SIMULATION

DYNAMIC SIMULATION

TARGET DEFINITION

OPERATIVE PHASE

THE PLANNING PHASE

DRILLING PROJECT PLANNING

DIRECTIONAL PLANNING

THE DRILLING RIG

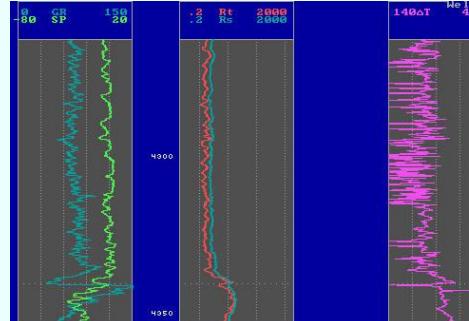
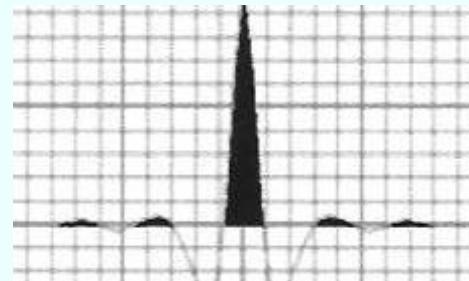
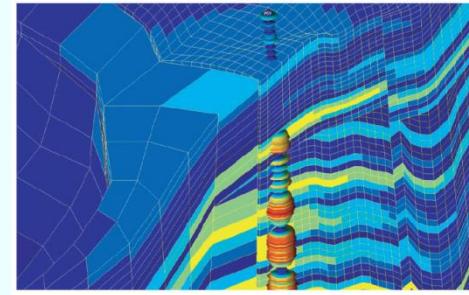
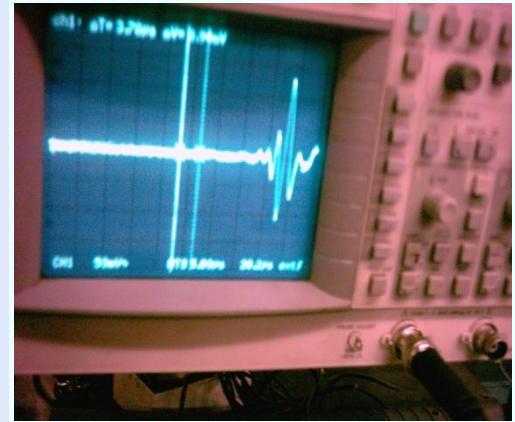
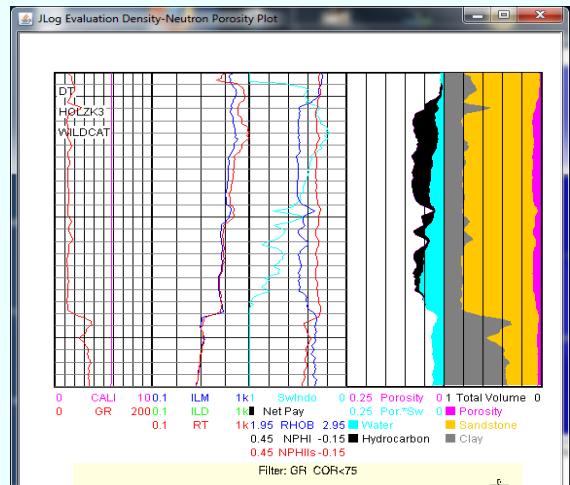
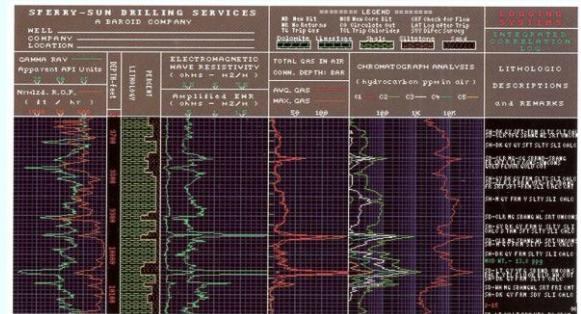
DATA LOGGING AND DRILLING DYNAMICS

PHYSICAL UNITS AND CONVERSIONS IN THE OIL INDUSTRY

DIRECTIONAL DRILLING METHODS

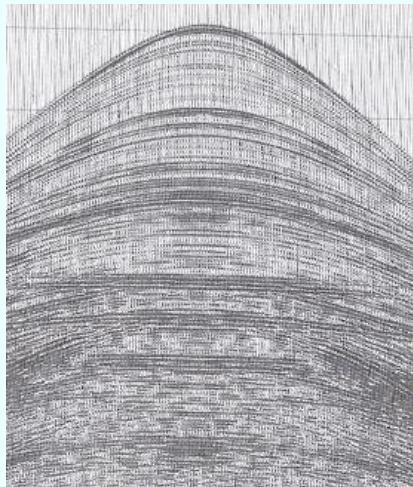
MWD/LWD SYSTEMS

WIRELINE LOGS







REALTIME LOGS AND ANALYSIS

REALTIME RESERVOIR CHARACTERIZATION

TESTING AND PRODUCTION METHODS


STIMULATION: FRAC OPERATIONS, COILED TUBING, ACIDIZING, CO₂

WELLTEST

DETAILED PROGRAM REGIONAL STUDY

The reservoir concept: Oil, Gas, Unconventionals, Geothermy
Geology and Plays
Geophysical studies:
Gravitational, Magnetotelluric, Seismic

3D SEISMIC EXPLORATION GENERAL CONCEPTS

SEISMIC WAVES

The Wave Equation

MAIN ELASTICITY PARAMETERS

Young, Poisson, Rigidity, Bulk Modulus, Lame constants (Static and Dynamic domains)

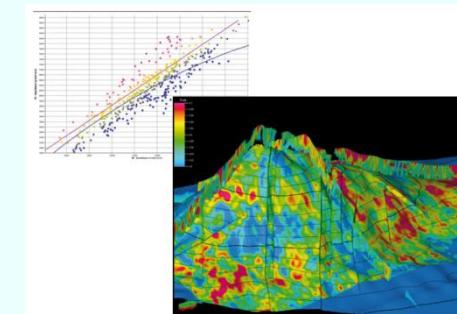
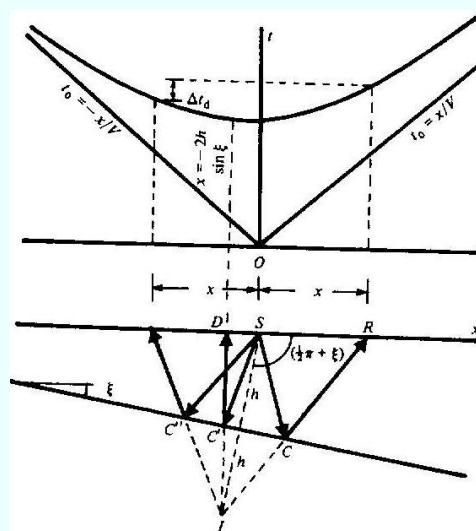
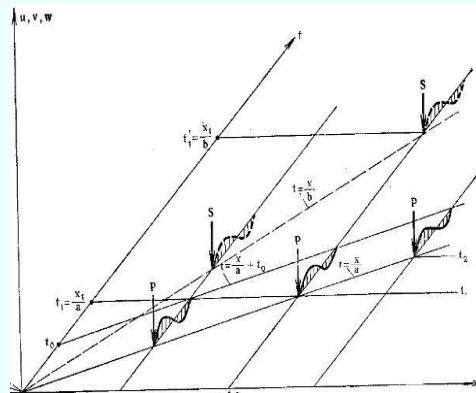
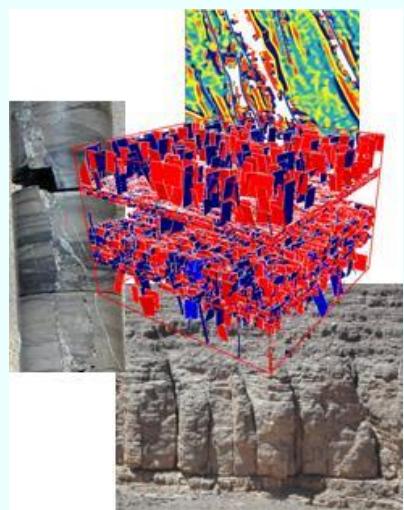
P-S WAVES PROPAGATION PARAMETERS

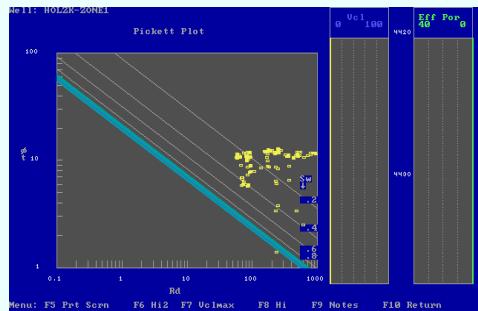
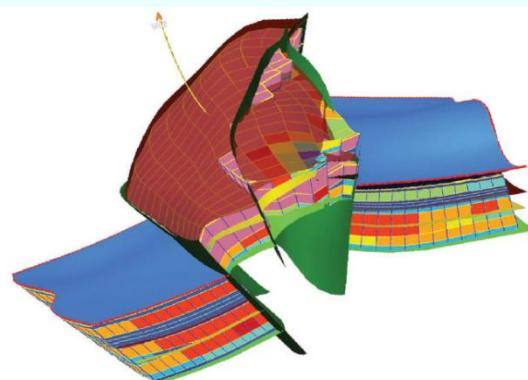
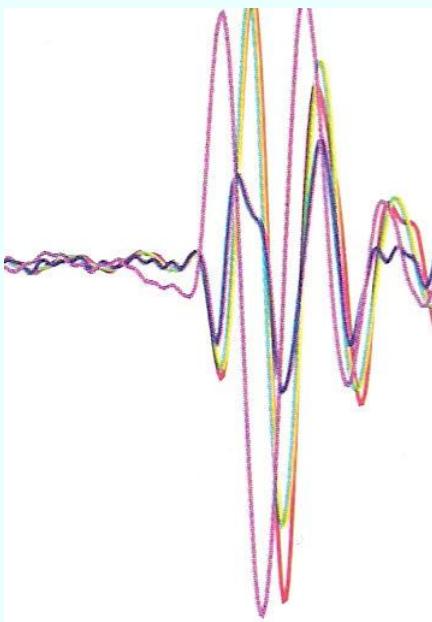
Velocity, Frequency, Wavelength, Phase, Energy, Intensity, Attenuation, Absorption, Spherical Divergence, Acoustic Impedance, Elastic Impedance, Reflection and Transmission Coefficients

IMPORTANT LAWS FOR WAVE PROPAGATION:
Snell, Huygens, Zoeppritz

WAVE PROPAGATION MODELS

Ray Tracing, Diffraction Modeling, Exploding Reflectors, Huygens Model, Kirchhoff, Wave Equation, Eikonal Equation





GEOMETRY OF SEISMIC WAVES PATH – RAY PROPAGATION GEOMETRY / PHENOMENA




NMO, DMO, Offset, Velocity, Raypath, Reflection, Refraction, Transmission, Conversion, Polarization, S-Waves Splitting
Diffraction, Multiples, Sideswipes, Dispersion, Anisotropy

VERTICAL AND HORIZONTAL RESOLUTION
Tuning Thickness, Fresnel Zone

SOURCE MODELS

The Dirac Impulse, Zero and Minimum Phase Wavelet, Sweep, Sweep Design (Bandwidth, Frequency, Taper)

THE UPCOMING SEISMIC EVENTS

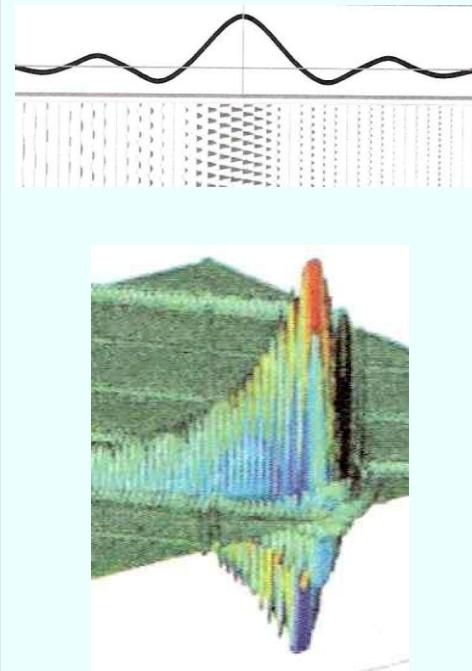
Event Signatures , Basic Wavelets, Integral, First and Second Derivatives, Polarity

SOURCES

Vibroseis, Explosives, Waterguns

RECORDERS

Geophones, Geophones Arrays, Marine Streamers


3D SEISMIC PLANNING

3D Seismic Layout Parameters:

Main Concepts: (Inline, Crossline, CMP, Bin, Fold, Taper, Patch, Scattering angle, Template, Xmax, Xmin, Migr-Apron, S/N Ratio)

ELEMENTARY SEISMIC DATA PROCESSING SEQUENCE

- Geometry
- Amplitude recovery
- Deconvolution
- Statics
- Noise attenuation
- Velocities
- Stacking
- Migration
- Inversion , AVO

GENERAL CONCEPTS IN THE PROCESSING WORKFLOW

- ELEMENTS OF DIGITAL ANALYSIS OF ANALOG SEISMIC SIGNALS

The Raw Signal, Ricker Wavelet and Spectrum, Zero Phase and Minimum Phase, Fourier transform, Frequency and Phase Spectra, the Sampling Theorem, Aliasing, Nyquist Frequency, the Convolution Theorem, Comb, Sinc, Boxcar, Hilbert transform, Z Transform, Laplace Transform and Transfer Functions, Convolution/Deconvolution, Filters, S/N Ratio, Autocorrelation, Crosscorrelation, Coherence, Semblance, Function Shift/Spectral Changes, Spectral Shift/Function Changes

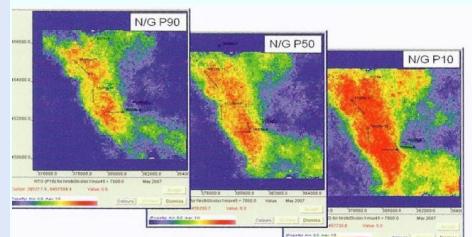
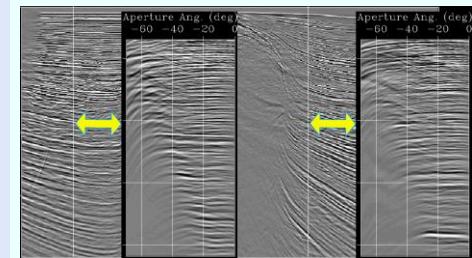
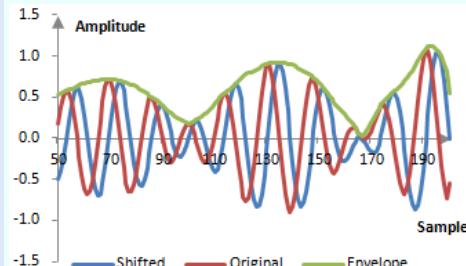
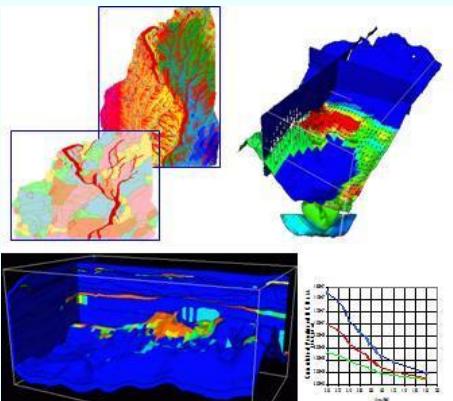
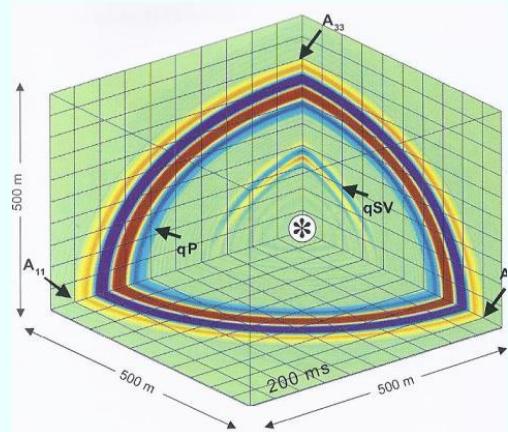
THE ANISOTROPY PROBLEM

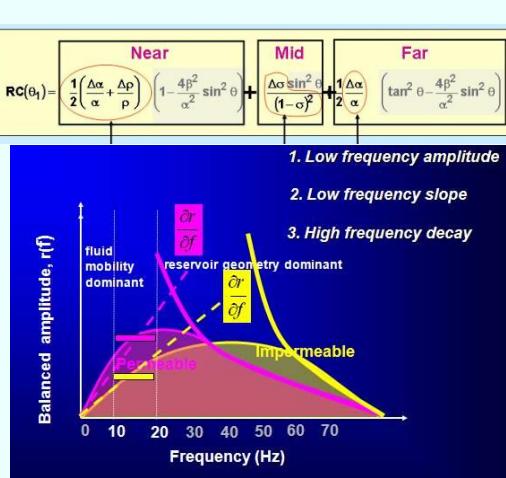
Micro and Macro-Anisotropy, Anisotropy Systems, the Stiffness Tensor, Parametrization of Anisotropy, Polarization, qP and qS Waves. Weak Anisotropy. The Thomsen Parameters. VTI and HTI media. AVAZ.

THE VELOCITY MODEL

V-Analysis, Vrms, Vinterval, Vstack, Dix Equations, Dispersion and Frequency dependency

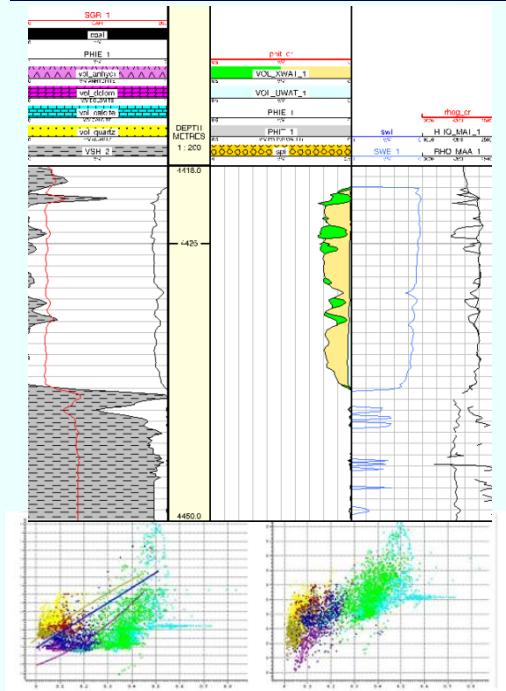
IMAGING






Pre and Post-Stack Migration
NMO, DMO, Zero Offset, Ray Tracing, Diffraction Modeling, Fourier, Exploding Reflectors, Huygens, Wave equation, Eikonal equation, Kirchhoff Migration, Tomography, Beam Migration, RTM, WEM


INVERSION

Pre and Post-Stack Inversion.
Linearization of the Zoeppritz Equation. The Aki-Richards Equation. Elastic Impedance, LMR, Simultaneous Inversion.
Convolutional Model, Recursive Inversion, Colored Inversion, Sparse Spike Inversion. Stochastic Inversion.

INTERPRETATION


Amplitude, Signature, Seismic Stratigraphy, Noise, Multiples, Side-Swipes, Diffraction, Seismic Attributes Analysis, Amplitude Interpretation, modern Workstations Interpretation programs Workflows

AVO INTERPRETATION AND ROCK PHYSICS

Concepts of Space-Statistics, Heterogeneity, Anisotropy, Variographic Functions and Structure (Lag, Nugget, Range, Sill), Variogram Models, Covariant and Fractal Models, REV (Representative Effective Volume) and Measurements Resolution. The Effektive-Volumes: Gassmann, Hertz-Mindlin, Voigt, Reuss, Hill, Hashin-Strickman, CCT, SCA, DEM Models, Sonic-Sampling In - Field Seismic-Sampling In - Field Velocity Models and Anisotropy Linearized Models of the Zoeppritz Equation, Shuey Equation, Angel-Stacks, Cube-Stacks, NI and Poisson Reflectivity Reservoir-Impedance, AVO Classes 1,2,3, Seismic Signatures, AVO Attributes Analysis

SEISMIC ATTRIBUTES ANALYSIS

Interpretive Processing for Seismic Attributes, Amplitude, Time and Complex Attributes, Spectral Decomposition. Multiatributes Interpretation

CLASTIC AND CARBONATE PETROPHYSICS

The Archie's Equation and Archies Parameters: (a,m,n,F), Porosity Partitioning, Vsh and Sw Determination, Saraband Model, Dual Water Model, Sw Equations for Shale-Sands Analysis, Lucia Classification, Porosity /Secondary Porosity classification and m-Dependency, Saturation Zones, Capillary Pressure Curve, Winland / Fock and Munn theories,

The General Parallel Conductor Model, the Dual-Porosity Model, Special Core Analysis

STATIC SIMULATION

SEISMIC AND PETROPHYSICAL RESERVOIR CHARACTERIZATION, STATIC SIMULATION IMPLEMENTING MODELS

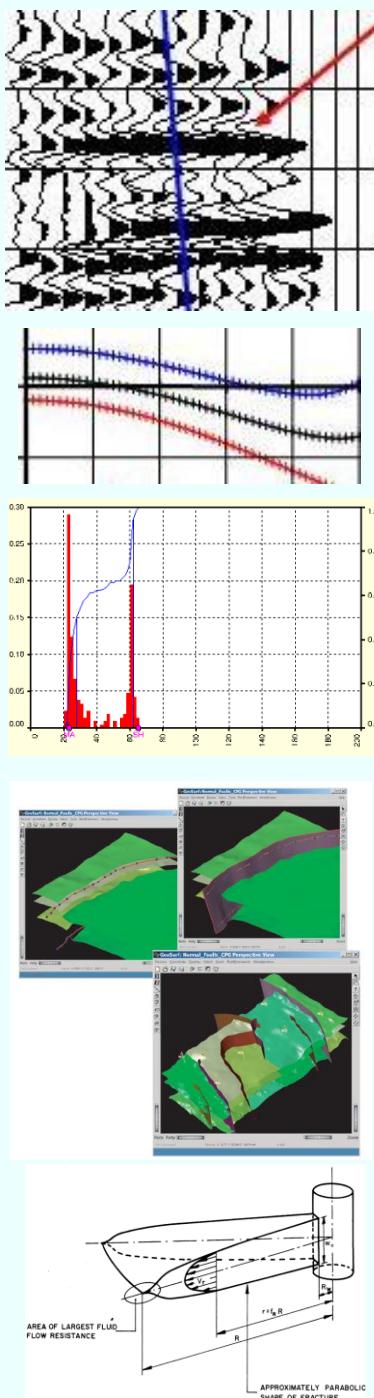

3D Seismic Visualization, 3D Modeling, the Seismic Impedance, Coherence, Steering Cube, Inline/Crossline Sections, the Attributes Cube, Structural Models, Fault Modeling, Pillar Gridding, Zonation and Layering, Facies Modeling, Petrophysical Modeling, Upscaling, Variogram Modeling, Kriging Algorithms, Sequential Gaussian Simulation, Multiple Realizations Models, Neural Networks Estimation Models Electrofacies concepts, Volume Calculation, Target Definition, Well Design

TABLE 4.1—EQUATIONS FOR FRACTURE LENGTH, MAXIMUM FRACTURE WIDTH, AND INJECTION PRESSURE FOR CONSTANT INJECTION RATE		
PKN Model		
$L(t)$	$w(0,t)$	$p(0,t) - \sigma_H$
$C_1 \left[\frac{Gq_0^3}{(1-\nu)\mu h_f^4} \right]^{1/5} t^{4/5}$	$C_2 \left[\frac{(1-\nu)q_0^2 \mu}{Gh_f} \right]^{1/5} t^{1/5}$	$C_3 \left[\frac{Gq_0^3 \mu L}{H_f (1-\nu)^3} \right]^{1/4}$
$C_4 \left[\frac{Gq_0^3}{(1-\nu)\mu h_f^3} \right]^{1/6} t^{2/3}$	$C_5 \left[\frac{(1-\nu)q_0^2 \mu}{Gh_f^3} \right]^{1/6} t^{1/6}$	$C_6 \left[\frac{Gq_0 \mu h_f^2}{2H_f (1-\nu)^3 L^2} \right]^{1/4}$

Observe that p_o increases with fracture length and thus treatment time for PKN models and decreases with fracture length for GdK-type models.

TARGETS

Oil and Gas Targets, Hot Dry Rock, Hydrogeothermal, High Entalpy Targets

DRILLING PRIMER

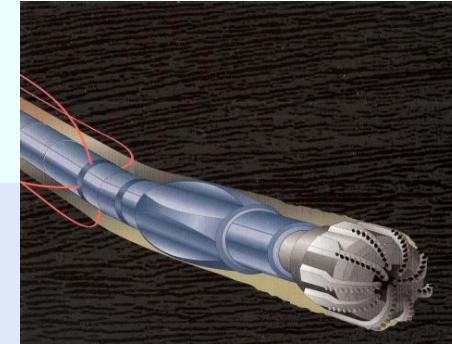
History of Drilling Methods
Types of Wells and Well Patterns
The Drilling Process
Drilling Rights
Drilling a Well
Production Performance Ratios
Well Productivity
Modern Drilling Methods
Activities

DRILLING AND COMPLETIONS

Rotary Drilling
Casing
Completions
Formation Damage and Stimulation
Typical Drilling Problems
Activities

SURFACE FACILITIES

Onshore Facilities
Offshore Facilities
Fluid Transport Facilities
Pipe Flow
Refineries
Urban Operations – The Barnett Shale
Activities



WELL LOGGING

Well Logging Principles
Direct Measurement Logs
Lithology Logs
Porosity Logs
Resistivity Logs
Other Types of Logs
Reservoir Characterization Issues
Activities

TRANSIENT WELL TESTING

Pressure Transient Testing
Oil Well Pressure Transient Testing
Gas Well Pressure Transient Testing
Gas Well Deliverability
Summary of Transient Well Testing
Activities

PRODUCTION EVALUATION TECHNIQUES

Decline Curve Analysis

Probabilistic Decline Curve Analysis

Material Balance

Production Performance Ratios and Drive Mechanisms

Wellbore-Reservoir Coupling

Tracer Tests

Activities

RESERVOIR FLOW MODELING

Field Performance Data

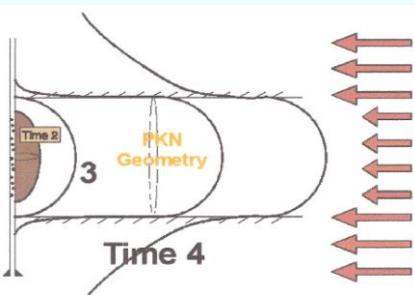
Data Management

Reservoir Characterization

Green Field Flow Modeling

Brown Field Flow Modeling

Activities


RECOVERY AND RESERVES

Recovery

Reserve Definitions

Reserve Determination Methods

Decline Curve Analysis

INTERPRETATION WITH PROFESSIONAL SOFTWARE

SEISMIC INTERPRETATION

Data Loading: SEGY, Creation of a Steering Cube, Horizon Cube etc, Well-Tie, Visualization of Horizons Slices, Inline , Xline, Transverse, Horizontal Sections, Autotracking, Antracking, Attributes Analysis, Volume Rendering, Spectral Decomposition, Properties Crossplotting, Velocity Analysis, Sequence Stratigraphy

LOG INTERPRETATION

Data loading: LAS, DLIS, ASCII, Format Logs, Merge/Shift, SCAL. Calculation of PHI,Vsh, PHIEff, Frequency Plots, RHOB-NPHI Xplot, Pickett Xplot, Complex Lithology Xplots, Sw, Shy,K, Pay Volume determination. Single Well and Multi-Well Interpretation

STATIC MODELING SOFTWARE

Fault Modeling, Pillar Gridding, Zonation and Layering, Facies Modeling, Petrophysical Modeling, Upscaling, Well Design

DYNAMIC SIMULATION SOFTWARE

Overview of the Modeling Process, Conceptual Reservoir Scales, Reservoir Structure, Fluid and Rock-Fluid Interaction, Reservoir Simulation, Reservoir Architecture, Data Preparation, History Matching, Predictions

Dynamic Simulation using "IFLO" software.

Reservoir Flow Modeling:

Input Data

Green Field Model Workflow

Brown Field Model Workflow

Integrated Flow Model (IFLO) Demonstration

Course Books:

- J.R. Fanchi - Nontechnical Guide to Petroleum Geology, Exploration, Drilling and Production (3rd Edition) by Norman J. Hyne (PennWell, 2012)
- GeoNeurale
- Introduction to Geothermal and Petroleum Exploration
- Course Notes

Instructor's Biography

John R. Fanchi is a Professor in the Department of Engineering at Texas Christian University in Fort Worth, Texas. He is holder of the Matthews Chair of Petroleum Engineering. He has taught petroleum and energy engineering courses at TCU and at the Colorado School of Mines, and worked in the technology centers of four energy companies. He co-edited Volume 1 General Engineering of the SPE Petroleum Engineering Handbook (with L. Lake, SPE, 2006), and is the author of several books, including Integrated Reservoir Asset Management (Elsevier, 2010), Energy in the 21st Century, 2nd Edition (with C.J. Fanchi, World Scientific, 2010), Principles of Applied Reservoir Simulation, 3rd Edition (Elsevier, 2006), Math Refresher for Scientists and Engineers, 3rd Edition (Wiley, 2006), Energy: Technology and Directions for the Future (Elsevier-Academic Press, 2004), Shared Earth Modeling (Elsevier, 2002), Integrated Flow Modeling (Elsevier, 2000), and Parametrized Relativistic Quantum Theory (Kluwer, 1993). Dr. Fanchi was Director of the Consortium for Integrated Flow Modeling at CSM and has a Ph.D. in physics from the University of Houston.

Angelo Piasentin, leads since 2007 the scientific course administration at GeoNeurale - Munich. He graduated in Geosciences with Internato in Geophysics at the University of Padua. He worked with all major oil service companies as a Mud-Logging, Data Logging Engineer, MWD-LWD Engineer in oil exploration operations in 4 continents in projects for Agip, BEB, BP, Chevron, Cepsa, Coastal Oil and Gas, Deutsche Texaco, Elf, Enterprise Oil, Ina, Maersk Oil, MND, Mobil, NAM, Norsk Hydro, Pennzoil, Repsol, Shell, Sonatrach, Statoil, Texaco, Vermilion, Wintershall. He progressed in the Geothermal and Oil Exploration working as a Petrophysicist and Geoscientist. He was involved altogether in more than 60 operations projects in the Oil/Gas and Geothermal Exploration. He participated to the course development of Neural Network Applications for the Petrophysical and Geophysical Analysis and Integrated Geostatistical and Petrophysical Applications. Authored papers and publications and presented three patents for new geothermal exploration Systems and new methods to integrate Petrophysical Analysis in the Pre-Stack Seismic Inversion with distribution of Petrophysical properties in the 3D Seismic Volume.

REGISTRATION FORM

Please fill this form and Fax to +49 89 8969 1117 or Email to
Courses@GeoNeurale.com

INTRODUCTION TO THE GEOTHERMAL AND PETROLEUM EXPLORATION

Munich , 28 July – 03 August 2014
(7 Days)

Course Fee: 3650 Euro + VAT 19% (Private companies outside Germany can be exented from VAT TAX . For informations contact:
courses@geoneurale.com)

Name:

Company:

Address:

Job Title:

Phone:

Fax:

Email:

SIGNATURE: _____