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As Geoscientists, we are accoustomed
to facing uncertainty, and thus often
provide not only a Best Estimate, but
also both Up- and Down-side. In fact,
however, while this simple and useful
characterization is a step in the right
direction, it can be improved upon in a
manner that recognizes (Figure 1);

e |tis unlikely (but not impossible)
that the various input High- and
Low-Side values will occur
simultaneously.

e The individual input attributes (Rw,

*Geoscientists are accustomed to
dealing with uncertainty

*While minimum and maximum
variations are common, they may be
incomplete and even somewhat
misleading.

eIt is unlikely that all the High-
and Low-Side values will occur
simultaneously.

*The individual input attributes
are linked; changing one may
cause the impact of another to
change.

*There are two basic alternatives,
partial derivatives and statistical
simulation, that complement one
another.
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*Why quantify the uncertainty?
*Time and Budget

*There is typically a limited
timeframe and budget. Where
do we focus?

Lack of data and/or previous
experiences

*Even with “focus’, we
seldom have all the data we
would like.

*A previous bad experience,
by either our self or someone
else on the Team, will
compound the unease, and
possibly cause us to focus on
an inappropriate (for the
current situation) parameter.

Porosity, etc in Archie’s equation, for example) are
linked, and a change in the uncertainty of one can affect the impact that another has on
the ultimate estimate.

e Determines which of the input attributes is dominating uncertainty in the ultimate
estimate, for each specific combination.

*Monte Carlo simulation of Archie‘s Eqn

eItis unlikely (but not impossible) that all the
various input High- and Low-Side values will

occur simultaneously.

*There is a 95% likelihood that Sw is
contained within + / - 2 o-of the mean

0.28 < Sw < 0.433

*The corresponding High- / Low-Side
uncertainty estimate is

0.239 < Sw < 0.50

Monte Carlo Distribution

Frequency
g

Volumetrics, etc).

The Devil’s Promenade, SW Missouri

There are two basic alternatives to the
High- and Low-Side approach, partial
derivatives and statistical simulation,
that complement one another.

Here the issue is illustrated with
Archie’s equation, but the concept is
general, in that once understood it
may be applied to many of the issues
that we face day-to-day (routine and
special core analyses, conversion of
Pc(Lab) to Pc(Reservoir),
Saturation(Height), Reservoir

Once we have mastered one

calculation, it is straight-forward to appy it to an entirely different question. And the Excel
spreadsheet that we have constructed for the first calculation, jump-starts the evaluation of

the next calculation.
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«Differential analyses of Archie’s Equation (follow Chen’s nomenclature) The advantage Of Monte Carlo

«Denote percentage-wise uncertainty as “y%?. This is, in general, unique to each parameter simulation iS that once the

*Porosity involves the ‘m’ exponent, and so \-,/ (/a X 2 spreads.heiet IS S_et up fora SpeCIfIC

the functional form is different from ‘a’, R, Co= (a_) = a(?)‘*y%’\ : @1 model, itis stralght-forwa rd to

and R, e (IR Y ep - .

The ‘m’ and ‘n’ exponents share asimitar | - = (+=) = |(3) v @D modify it for a completely different

result, which is different than the other PN ) i iti - i

attributes, and involve parameters beyond ) = :(%_)[tyw'v)i = ®.3) q.ues.tlon.. Addlthnally' r.10n Gaussian
distributions, which do indeed occur

in the oilfield, can be addressed and

«‘a’, R, and R, all enter the Archie equation f\g of the ‘m’ exponent and share a similar result

their own uncertainty.

7 p
«In contrast with ‘a’, R,, and R,, the relative Co = (m . f) 4

importance of porosity, ‘m’and ‘n’ depend

thool:\;)é:;())(:r?etrh:tltrrisgjfel:c uncertainty, but [fnw ) (y%) 8.5 the. YlSU&' dIStrIbUtIO.n output
«The individual best-estimate values are c,(jws.:.qsws:w )7 ©6 facilitates an extra dimension of
linked in the ultimate uncertainty. L (S (%) understanding: Figure 2.
:el‘gltﬁlr:te; Aazglil'sz'o’;i:gﬁarameters in Archie‘s Water H H H
Saturation Equation. The Log Analyst. Sept — Oct 1986 The attraCtlon Of the d’fferentlal

approach is that a set of analytical
equations result, which may be easily coded into a foot-by-foot evaluation, and then displayed
alongside our best-estimate results: Figure 3.

Remember, in the Figure 3 symbolism (following Chen & Fang, 1986) that uncertainty for each
attribute is written simply as y%, but the specific value is in general unique to each parameter
and situation. Note that the uncertainty in Sw, associated with Porosity, ‘m’ and ‘n’ is linked to
other parameters and uncertainty estimates.

The Differential Approach

As carbonate (rather than shaly sand) petrophysicists, our Sw estimates are typically
compromised by uncertainty in the Archie equation attributes.

SwnzaRw/(CDmRt)

By taking the derivative of Archie’s equation (the same approach will suffice for a shaly sand
equation, or any of the other various calculations Geoscientists routinely perform), one is able
to quantify the individual impact of each term (and its uncertainty) upon the ultimate result,
and thus recognize where the biggest bang for the buck, in terms of a core analyses program,
suite of potential logs, etc, is to be found.

Each of the Sw input attributes has a Best Estimate value, and an associated uncertainty
distribution. The individual uncertainties ‘propagate’ through to the composite result
according to a specific protocol: http://en.wikipedia.org/wiki/Propagation_of uncertainty.

The uncertainty of each parameter ‘x’ may be characterized by the respective standard
deviation (o), which is the positive square root of the variance [(oy)?]. As an example, the 68%
confidence limits of a normally (bell-shaped) distributed variable ‘x’, are x +/- o,.

In general, the uncertainty in ‘y’, which is some function of variables x; = x,,, is
(0y)* =2 [(dy / dx;) oxi ]*

where the partial derivative of y, with respect to x;, is represented by dy / dx;, rather than the
mathematically correct partial derivative symbol, so as to minimize the need for special word
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processor symbols. See the Wikipedia reference, above, for more background information and
the partial derivative symbolism; there are additional mathematical details in Appendix V of the
Mechanics Lab Manual, Case Western Reserve University (available on-line): Uncertainty and
Error Propagation.

As a specific example of error propagation, Ohm’s Law relates Resistance (R), Voltage (V) and
Current (1) as

R=V/I

Measurement of both “V” and “I” are subject to uncertainty, which propagates through to
“R”, according to (as above)

AR*= (AV /1% + (V Al / 17)?

Differentiation of Archie’s equation is somewhat more complicated than Ohm’s Law, but still
within the realm of basic calculus (Risky Business for the details). Following Chen (1986) the
respective uncertainties are thought of as percentage wise specifications (“y%” in Chen’s
notation, in general unique for each attribute, but uniformly symbolized as y% in the
notation).

dSy / dRy = Sw/ (n * Ry)
(dSw / dRw)* (6Rw)* = (Sw/ n)* [( oRw )/ Rul® = (Sw/ n)* [( % Rw) / Rul® = (Sw/ n)* (y%)*
dS, /da=S,/(n*a)
(dSw / da)* (ca)* = (Sw/ n)* [(ca )/ al* = (Sw/ n)* [(y% a) / al’ = (Sw/ n)* (y%)’
dS, / dR¢=Su/ (n * Ry
(dSw / dRy)? (GR)* = (Sw/ n)* [( oRt )/ Rd® = (Sw/ n)* [(y% Re) / Rd* = (Sw/ n)* (y%)’
dSw/dd=-mSy/(n d)
(dSw / d§)* (50) = (Sw/ n)* [m (60 )/ ¢1° = (Sw/ n)* [ (y% &) / §1° = (Sw/ n)* (m y%)’
dS,/dm = (Sw) In[¢] (-1/n)
(dSw / dm)?® (om)® = (Sw/ n)* [In() (oM )1 = (Sw/ n)* [In($)( y% m )] = (Sw/ n)* [m In(¢) y%)]*
dSw/dn = (Sw) In(Sw) (-1/n)
(dSw / dn)* (on)? = (Sw/ n)” [IN(Sw) (on )1* = (Sw/ n)* [IN(Sw)( y% n)1* = (Sw/ n)* [n In(S.) y%)1*

Each of the terms share the (Sw/ n)? prefix; dropping this yields the relative magnitudes of the
various components, as follows.

C(Rw) = (v%)*
C(a) = (y%)’
C(Ry) = (y%)’

C(¢) = (m y%)°
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C(m) = [m In(¢) y%)1*
C(n) = [n In(Sw) y%)1

For complete clarity Figure 4
and comparison, we
’ The relative impact of porosity upon the
follow Chen’s 1986 U [ Pt e i T ¥ (/2 2
nomenclature. as in uncertainty in Sw, is a function of the ct (a_) = ‘(;)(iy%) L= 6% @D
Ei 3 ! cementation exponent “m”
igure 3. (oY - TR iy V= oy
*Since “m” > 1.0, c""(R.) = l(g-)‘*’"”" %) 8.2)
These equations reveal on\s ((R 2
. > o k(25N = N2 (kym)l = v (83
that ‘a’, Ry and R; are “Coni > Ce Equal y% o f (%) = (&) wrmf S omr 69
’ oC... >C Uncertainties ) R
dependent upon only Phi Rw | [c]- (m . ’;T) @ (8.4)
3 . /
their respective *Cpni > Cr
. o Co |= [E0(®) 0w = [((@™)]* (v%)? 6.5
uncertainties, whereas | «in this situation, time and money are - @ el = {m@DEE
‘m’ and ‘n’ involve better spent on improved porosity = NN O%F
# " an ; estimates, rather than than “a”, “R,” o ) o.F = [HE2F oWy &5
other attributes. . rolw = (S (%)
t
: H. C. Chen and J. H. Fang.
When the respective *The relative importance of “m” and “n’" | Sensitivity Analysis of the Parameters in Archie‘s Water
uncertainties are require additional considerations Saturation Equation. The Log Analyst. Sept — Oct 1986

equal, one then has

C(¢) > C(Ry), C(a), C(R:) simply because ‘m’ > 1: Figure 4. In such a situation, time and money
are better spent on improved porosity estimates, rather than ‘a’, R,, or R..

Because the relative uncertainty in ‘m’ and ‘n’ involves the (square of a) natural logarithm, the
behavior is more complicated, and involves an inflection point.

A spreadsheet formulation allows one to not only easily perform the calculations, but to also
consider what the effect of a change in reservoir quality (porosity) would mean (because the
importance of ‘m’ and ‘n’ is linked to porosity), with locally specific values.

At 20 pu formation evaluation,

Figure 5 t:g:: Slr:: g;z‘;’:g:ﬁlﬁ;ﬂ i‘;ﬁfgcmion Relative Contribution To Sw Uncertainty . , .
I_I A with Chen’s conditions, the
. Attribute Uncertainty Estimate On Sw(Ar 2

*At 20 pu, formation Rw e 406 00 00019 | o focus should be on improved
evaluation should focus on ~ |eni 15.0% g-gg\ 00000 | = . ‘. .
improved porosity and ‘m” [» so 20 g | 2o porosity and ‘m” estimates,

. . t .0Y . . o . .
estimates, with ‘n’ of s we with ‘n’ of relatively less
re|ath8|y less |mp0rtance- 0.367 is a logarithmic inflection point | E impo rtance. If porosity rises to

-

«If porosity rises to 30 pu, however, improved porosity

‘ 0.10 .
estimates become more important with ‘m’and ‘i’ | | V\t 30 pu, however, improved
having similar, and less, impact. I .. . . | porosity estimates become
*As porosity drops to 10 pu, it is the pore connectivity ,' Porosity more importa nt with ‘m’ and
‘m’) that begins to dominate the accuracy. / . buti . . "
( ) g y v Relative Contribution To Sw Uncertainty ln' haV|ng Slml|al’, and IeSS,

impact. As porosity drops
below 20 pu, it is the pore

+If the water were fresher, say Rw = 0.2 instead of 0.02/  ** p—
‘n’ diminishes in importance as compared to both the  /

amount of porosity, and its connectivity (‘m’). T

£
£
Lt S Cols e o ot | £ = connectivity (‘m’) that begins

After C. Chen _and J.H. . Attribute Il?:::\g?!:i:ty g:?mate,,gilzgx&ﬂ E 020 to dom | nate the accu racy.
Fang. Sensitivity Analysis a 0.0% 100y 00000 | .
of the Parameters in v e Figure 5.
Archie‘s Water Saturation |7 N —
Equation. The Log Analyst.  |&t Lot io.00 U o - - - N
Sept 3 OCt 1986 SV;:; is a logarithmic infleg;/; point Porosity
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If the water were fresher, say Rw =
0.2 instead of 0.02, ‘n’ diminishes in
importance as compared to both
the amount of porosity, and its
connectivity (‘m’).

Yet more details and variations are
to be found in Chen & Fang (1986);
coding the equations to a
spreadsheet will allow application
of the concept to locally specific
conditions. And an advantage of
the differential approach is that it
may be readily accommodated
within our foot-by-foot
evaluations.

«Carbonate pore structure is complex with a wide
variety of pore sizes ranging from visible to
microscopic.

«As hydrocarbon charging occurs, macro-pore
water tends to be displaced first.

«Depending on the buoyancy pressure and viscosity
of the oil, a portion of the meso-pores are likely to
become oil charged.

*While the Archie equation has had tremendous
success, there are limitations in carbonates

*One of the critical assumptions typically made is
that the measure current moves uniformly through
the formation

*The presence of water-filled micro-pores in close
proximity to the larger hydrocarbon-filled pores
may short-circuit the resistivity measure currents

«This causes the oil saturation to be under-estimated

Estimating S,, with a volume measurement
R. Griffiths, A. Carnegie, A. Gyllensten, M. T. Ribeiro, A.
Prasodjo, and Y. Sallam. World Oil, October 2006

In this, or other physical models, we must remember that not only is there uncertainty in the

various inputs to the model (equation), but there may very well be limitations upon the

validity of the equation being used: Figure 6.

Carlos Torres-Verdin cautions “my experience shows that the biasing of apparent resistivity

curves due to post-processing techniques (e.g. deconvolution) could be more detrimental to

uncertainty than Archie's parameters. A conspicuous case is that of a thin, hydrocarbon-

saturated bed: bed thickness and invasion can give you much more uncertainty than Archie's

parameters”.

Monte Carlo Simulation

Monte Carlo simulation is based upon repeated random sampling of the various user-
specified input distributions, which are then used to calculate a composite result. Multiple
‘random calculations’ super-imposed and a statistical representation of the ‘expected

distribution’ results. It’s a particularly attractive approach when it is infeasible or impossible to
compute an exact result with a deterministic algorithm, and we also find the visual display of
the simulated distribution to be useful.

In the case of the illustrative S,, simulation, each of the individual input attributes (R, Phi, ‘m’,
etc) can be represented by the appropriate Best Estimate value, encompassed by a distribution
of associated Possible Values, according to the appropriate user-specified distribution
(Gaussian, Square, Triangular, Log Normal, etc).

The individual, randomly selected results for Ry, Phi, ‘m’, etc are then input to the Sw
calculation, multiple times, and the resulting Most Likely Value, and uncertainty distribution,
determined both numerically and graphically.

A limitation of Monte Carlo is that special software is often used (commercial add-ons to Excel,
etc), and may not even an option in commercially available petrophysics s/w packages.
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Common oilfield distributions, however, such as Normal, Log Normal and Triangle are available
in Excel and it is straight-forward to implement Monte Carlo within the Excel framework. In
this approach, one remains in the familiar Excel environment, and actually leverages their Excel
skill set via the additional hands-on experience within the platform.

A discussion of the Monte Carlo method can be found in Decision Analysis for Petroleum
Exploration by Paul Newendorp & John Schuyler, and a collection of articles addressing
exploration risk can be found in The Business of Petroleum Exploration published by the AAPG,
Tulsa, Oklahoma.

Additional information may be found in the References, with useful on-line reference material
to be found at the following links.

e http://www.enrg.Isu.edu/pttc/

e http://www.mrexcel.com/

e http://people.stfx.ca/bliengme/exceltips.htm

e http://office.microsoft.com/en-us/excel/HA011118931033.aspx

e http://www.statsoft.com/textbook/stathome.html

e http://en.wikipedia.org/wiki/Monte_carlo_simulation

e http://www.ipp.mpg.de/de/for/bereiche/stellarator/Comp_sci/CompScience/csep/csep
1.phy.ornl.gov/mc/mc.html

e http://www.sitmo.com/eqcat/15

e http://www.riskglossary.com/link/monte_carlo_method.htm

e http://www.chem.unl.edu/zeng/joy/mclab/mcintro.html

For illustration purposes

Figure 7 (and as was done with the

-l =NORMINVIRAND(), 5656,5F55)

differential example), we
regard “a”, Ry and R; to be

3| n
22 12

203 0.32

number of Monte Carlo passes being used in a specific sjmulation

:‘ Moanta Carla Distributian We”_known’ and @, llmll

2 Ve Sl and “n” subject to

g A 1 . .o .
: 2 uncertainty as specified in
1 1 0.33 ]‘3; 1.82 0.9 0.7 00 “-! IIII Flgure 7'

1 2 098 0.20 134 1.96 0.3z 0.8 07 A

. o o W i J [l Allowance for uncertainty
s 6 o oz 2z 1w o T e ] in“@”, Rwand Remay be

17 7 0.00 021 188 207 0.32 .

B Bl Ase quality control device, we determine and display tHe addressed by a straight-
T or s 1 2% distribution of random numbers, between zero and one, fpr the forward extension of the

23 13
24 14
15

0.07

0.21

212

2.21 0.40
1.86 0.34]
2.08 0.38|

(2000, in this example). In a perfect world there would then be
200 observations in each of the ten bins displayed

*Each of the uncertain attributes are modeled as a random number input to NormInv,

whose mean value and standard deviation are locally appropriate. For example, the
first pass random estimate of porosity, with a distribution centered on 20 pu and
having a standard deviation of 1 pu, results in an estimate of 21 pu.

techniques presented here.
Also, while the focus here is
on the simple Sw(Archie),
any other model (shaly
sand, core analyses,
capillary pressure, etc) may

be evaluated in a similar manner. Once the concepts are understood, locally specific models

are readily developed.
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This example is based upon Gaussian distributions, but any of the other Excel options (Log
Normal, for example) that also occur in the oilfield, may be substituted.

Each of the uncertain attributes is modeled as a random number input to Norminv, whose
mean value and standard deviations are locally appropriate (and specified by the User). For
example (Exhibit 7), the first pass random estimate of porosity, with a distribution centered on
20 pu and having a standard deviation of 1 pu, results in an estimate of 21 pu. The random
values of “m” and “n”, appropriate to the specified distributions, are independently and
randomly determined, and S, calculated per the Archie relation.

Because Excel recalculates equations each time the spreadsheet is opened, or specifications are
changed, the various results will change (your line item spreadsheet values will change, each
time you make a modification).

As a quality control device, we determine and display the distribution of random numbers,
between zero and one, for the number of Monte Carlo passes being used in a specific
simulation (2000, in this example). In a perfect world there would be 200 observations in each
of the ten blue bins displayed in Figure 7.

We typically set up the spreadsheet with all input values specified in a single worksheet, and
links of those values to other relevant worksheets for display. Then, in order to prevent an
accidental over-write, we protect the cells for which the displayed values are the result of a
link. As an example, the specifications reported in the upper left of Figure 7 are ‘linked values’,
to allow easy comparison of the specification and the individual, multiple random realizations
(below the Spec Table). By protecting the cells in the Spec Table, we avoid an accidental,
inappropriate over-write.

Figure 8 Figure 8 illustrates the relation
between the random
150 " *Relation between e - .
Normlnv Magnitude Norminv Magnitude
- Norminy Magnitude | ' - mggrntw;le of Normlnv, and the
050 . |and the distribution of | , o= o distribution of Norminv values,
Eow — LT Norminv values £ o o for different standard
Z 50 [ *90 samples Z 050 .,"' deviati 90 si lati
1.00 *The distribution of -1.00 .'” evia Ions’ a . simulations.
150 Normlnv Magnitude | ., Both distributions take on an
0.00 0.20 0.40 0.60 0.80 100 | is “normal’ per 0.00 0.20 0.40 0.60 0.80 1.00 . .
Rond) specified ‘mean’ & ondl) approximate G.au55|an
Mean = 0. Std = 0.25 ‘std’, and will Mean = 0. Std = 0.50 appearance, with the larger
approach the -
Norminv Distribution expected ‘bell shape’ Norminv Distribution St_andard deviation result
2 as yet more 10 displaying more scatter. As the
" simulations are : .
. [ | performed . ]J \\ | .nu.mber of random .calc.ula'flons
] . *Itis the distribution | £ s [} is increased, each distribution
& . of Norminvvalues | = | ool | will approach the ideal
s i that is driving the 2 . ./ - i . . o 4. .
, | Sw(Archie) ! o3/ Gaussian. It is the distribution
-2.00 -1.50 -1.00 rosuB-ouu 050 1.00 1.50 2.00 Simulation -2.00 -1.50 -1.00 ru.sr;‘u.oo 050 1.00 1.50 2.00 of Normlnv Values that is
driving the Sw(Archie)

simulation. It’s important to realize that each occurrence of Norminv involves an independent
Rand() input.
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The approach taken here
is intended to parallel that

.4 Cross Check

of the LSU results (Must ‘ [A = g @- 5 whop T [ener
Read supplemental e e L il L=

material), which also
includes Log Normal and
Triangle distributions, and
so can be directly
referenced if either of
those distributions are
required:
www.enrg.lsu.edu/pttc/.

As an additional QC
device, the statistical
attributes of the simulated
quantities (@, ‘m” and ‘n’ in
this example) are tabulated
directly from the
simulation population, and displayed graphically: Figure 9.

E | F | & [ w | 1

Frequency

100

50 j t

Porosity

With 2000 simulations (easily handled by Excel), the model population nicely replicates the
input numerical specifications, and the porosity distribution takes on the expected appearance
per the parameter specs.

Simulation results are reported both numerically and graphically: Figure 10. In this particular
case, there is a 95%
likelihood that Sw is
contained within + / - 2
o, (0.357 -0.076) < Sw <
(0.357 + 0.076) = 0.28 <
Sw < 0.43. The graphical
display adds another
dimension to the
calculation.

In utilizing Excel
frequency distribution
graphics, one should take
note of how the ‘bins’ are
populated, as they are
not ‘centered’. This can
cause the graphic to take
on a shifted appearance,
with respect to the
numerical report (consult Excel Help on the Frequency function for details).
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In addition to the Monte Figure 11

Carlo simulation, we — T T

*One also observes that the Best / Worst numerical

falso set the spreadsheet R?N 0;5 evaluation of Sw(Archie) is considerably more
is up to calculate the Rt 10 pessimistic than is the +/- 2 o Monte Carlo
Best / Worst case Phi oj g‘l’clg simulation

scenario, which is found s > 00000 *The Best and Worst of all parameters are

to significantly over- unlikely to occur simultaneously

state the 95% Monte Monte Carlo Distribution Monte Carlo Statistics
600 Cross-check Specs
Carlo uncertainty. It is 0 L ] porosity
. [ \ Mean Std_Dev
unlikely (though not w00 I\ 0200 00101
" g

impossible) that the
Best or Worst, of all 0 R

Frequency
w
S
—
L—

Mean Std_Dev Mean  Std_Dev
1.999  0.1032 2.001 0.0890

. 100
attrIbUtes' would occur 0 B-a-u-u- \.\1 High-Low Numerical Statistics
SimultanEOUSIV: Figure 000 010 0.20 030 040 0.50
11 sw 0297 0363  0.43] |
0.243 0.307
A cqntrast of Figure 10 Best Case S —
vs Figure 11 illustrates Worst Case Sw 0.354

the ‘randomness’ of the

simulation, in that the spreadsheet was closed after generating Figure 10, and reopened to
produce Figure 11. As a result, we see slight differences in the various calculated (but not
specified) numerical values. As the number of random simulations is increased beyond 2000,
this difference diminishes, and vice versa.

The Biggest Bang for the Buck would be determined by now varying the individual input specs,
one after another, and observing which realistically achievable incremental improvement
results in the greatest improvement in S,,.

In viewing the graphics and results, one must bear in mind that the Sw(Archie) result
population is affected by the nonlinear relation between the various attributes, as discussed
by Bryant et al in Understanding Uncertainty, Oilfield Review. Autumn 2002, who illustrate
that @ normal uncertainty distribution about a given porosity yields a log-normal distribution
for the resulting S,, distribution. Bryant’s article is another Must Read.

Dealing With Risk

With rigorous mathematical options in hand, we are now able to quantitatively estimate the
uncertainty in an ultimate estimate, once we characterize the individual input parameter
uncertainties. This parameter specification is itself, a challenge, and subject the qualification
of ‘one size does not fit all feet’.

Voss (1998) comments on the determination of uncertainty ranges as does Bowers (2003).
Summary points include
* Asingle interpreter should avoid making estimates on their own.
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* Asingle interpreter often lacks the needed knowledge to correctly estimate
every parameter.
* In addition, many interpreters have a bias that smaller errors are better and they
will appear more knowledgeable about the subject.
* The error must reflect the level of knowledge about the parameters and the data
quality.
e A standard set of uncertainty ranges must be avoided because there is no standard
situation in which to apply them.
* Unusual events also pose special problems.
* Most people have a better recall of unusual events
e Therefore a tendency to overestimate the probability of such an event
e Especially if that event occurred recently
* Another very common mistake is to allow a very small amount of data to quantify the
range of uncertainty
* If data sets are small, the ranges probably need to be increased.
* Boundary Conditions
e Water saturation must lie between zero and one
e If the saturation values are too large or too small, the "best guesses” and ranges
must be reconsidered and calculations remade.
* The final and probably most difficult problem to overcome is the culture and
preconceived ideas of an organization.
e Methods and ranges of uncertainty applied to any analysis must be questioned
every time they are applied.
In the case of the illustrative S, analyses, we should not lose sight of the fact that the porosity
estimate is the result of a transform, which itself involves uncertainty (remember that old
phrase; the devil is in the details. Likewise, the S,, model involves basic assumptions. For
example, if clay or conductive minerals are an issue, the Sw(Archie) evaluation has been
immediately compromised.

In the carbonate world, as compared to clastic, clay is much less commonly a problem but dual
porosity systems, particularly in the transition zone, can challenge the Archie equation
electrical circuit model.: Griffiths et al (2006), Figure 6. High in the oil column or for gas wells in
general, increased capillary pressure will cause the hydrocarbon to more efficiently displace the
brine, and the magnitude of the problem diminishes.
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