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It has happened to most of us; the light is yellow as we approach the intersection, but since we
are in a hurry we push on through, only to hear our passenger (significant other, parent, etc)
comment “the law of averages is gonna catch you “.

There is, however, a bright side to “the law of averages” in that so long as the “noise” is
random, the uncertainty associated with a single foot-by-foot calculation is reduced at the
layer average level, and our average results may be considerably better quantified than is a
single foot-by-foot estimate.

Our attention is typically focused on foot-by-foot calculations (and associated “noise”) and
there is a tendency to over-look the difference and regard the average values (which will be
used for simulator initialization, reserves estimation, etc) as being subject to the same
uncertainty as the foot-by-foot values, when in fact the layer averages may be significantly
better known.

In most evaluations, the Log Repeat seldom receives any attention beyond possibly a simple
comment such as ‘repeat looks reasonable’. Were we to take the time to digitally load the
Repeat and compare it to the Main Pass in both the foot-by-foot and average value sense, we
would not only be able to better QC each logging run individually, but we could also estimate
the uncertainty present in the layer average values.

The situation can be illustrated with a physically realistic Monte Carlo simulation of Phi(Rhob):
Figure 1. At the foot-by-foot level the statistical ‘noise’ in the model corresponds to a standard
deviation of 0.0048, which infers that any single calculation will be within + / - 2 * (0.0048) of
the actual value, with 95 % probability.
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The implications of the uncertainty
at the layer average level can be
illustrated and understood by
imposing the modeled (or
empirically determined) standard
deviation of the noise upon a sine
curve (or an actual Main Pass
logging trace).

“Noise” tends to average out, and
as a result layer averages may be
much better known (and our
reserves calculation more
accurate) than the foot-by-foot
deviations would suggest: Figure
2. In this example, the layer

*The simulated, single point Phi(Rhob)
calculations are centered upon the average value
(.181) with a standard deviation of 0.0048.

*The corresponding average differences (exact vs
MC simulation) for ten independent simulations
(with the same uncertainties) across the interval
of interest, has a mean value of 0.0002 and a
standard deviation 0.0006.

+At the foot-by-foot level, there is 95 % /

probability that the porosity calculation is correct
to within +/- 0.096 (two standard deviations).

At the layer average level (as for reserves
estimation), there is 95 % probability that the
porosity is correct to within +/- 0.0012.

*So long as the ‘noise’ is random, Layer Averages
(such as used for reserves estimation) are
significantly better known than individual Foot-
by-Foot estimations.

*Quantitative interpretation of petrophysical log
repeats can thus serve to QC the basic
measurement, and additionally characterize the
uncertainty in both foot-by-foot and average
value calculations.
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average value exhibits a standard deviation of 0.0006, corresponding to a 95 % probability
band of + /- 0.0012, as compared to + / - 0.0096 for the foot-by-foot situation.

What is happening here is related to the Central Limit Theorem, which states that as the
sample size of a given population increases, the corresponding statistical description of that

population is better known.

Cautions to be exercised in this use of the data include the following.

e The “noise” must be random and not a “bias”.

0 If a “bias” appears in the observed Main vs Repeat results, that is an important
observation that requires additional action.

e Inthe case of a legacy database, or one which includes multiple service companies, we
should be alert for possible variations in tool performance across time and vendor.

e Comparisons to core should recognize the different volumes of investigation, and
evaluation of pad tools the possibility of variable orientations.

e When layer average maps are constructed, and contoured, these observed average
difference distributions can be considered (is the bulls-eye a statistical possibility?).

e Most of our interpretations “assume” some kind of “mode
and the potential for an inappropriate “mode

I"

I”

(mathematical relation),
should not be over-looked.

0 Interpretation models may be more appropriate in certain conditions than in

others.

e Inthe quest for Model Improvement, we should recognize that it is quite possible that
different input attributes have different impacts (more or less) on the final estimate,
and that the Biggest Bang for the Buck should be determined for each locally specific set

of conditions.
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In any case there is value in routinely establishing the simple statistical attributes of the
observed Main vs Repeat pass log traces at both the foot-by-foot and layer average levels.
The focus of uncertainty calculations is typically at the foot-by-foot level, and we may very
well find that our layer averages are better known. We will also then have available a

guantitative logging tool QC reference.

The Basic Data and Interpretation
Uncertainty is present in most of the things we do, and as conscientious geoscientists we are
always seeking to improve our results. Since time and budget are limited, a technique which
could identify which of the various inputs has the greatest impact on the ultimate estimate,
and thereby focus our attention, would be an obvious starting point.

There are two basic ways in which The Biggest Bang for the Buck can be identified: partial
derivatives and statistical simulation. Although the concepts are illustrated with petrophysical
log calculations, it is important to remember that the techniques are equally valid for other
actions: routine core analysis, directional survey bottom-hole placement, etc. In actual fact,
we got the idea for the petrophysical Excel Monte Carlo models used herein from a geological
calculation of reservoir volumes that was posted on the LSU www site

(http://www.enrg.lsu.edu/pttc/).

There is often no single, constant answer to the question “which attribute is most important”:
Figure 3. These results are based upon Chen and Fang’s differential analysis of Sw(Archie), and
clearly reveal that in their Base Case, and for Porosity < 20 pu, the “n” exponent is a relatively

| Figure 3 I

*Right: Relative impact on Sw(Archie)
uncertainty of ‘m’ & ‘n’, across a range
of porosity values, for a fixed Phi
uncertainty.

*Below: Illustrative Best Estimate of each
parameter, with corresponding individual
uncertainty, and associated relative
uncertainty on Sw(Archie), at a specific
porosity.
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*The relative importance of ‘m’and ‘n’
depend not only upon their specific
uncertainty, but also upon the porosity of
the interval in question; there is a link

*Uncertainty resulting from ‘a’, R, and R;
is below that of ¢, ‘m” & *n’ in this
illustrative example
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specific attributes and
uncertainties, and there may be a link between parameters.

The second option for finding the Biggest Bang for the Buck is with Monte Carlo modeling,
which can be implemented with routine Excel spreadsheet functions. The Monte Carlo method
randomly assigns values, according to user specified probability distributions, to each of the
input parameters and then calculates the result. When the simulation is repeated a statistically
significant number of times (results herein are based upon 2000 passes, which Excel handles
without a problem), one is able to determine the likely outcome within any specific probability
band, and to further identify which parameter is dominating the uncertainty (and hence where
time and money is most efficiently directed for an improved result). The output statistical
distribution, corresponding to local conditions, can also be compared to actual Main vs
Repeat Pass comparisons, and thereby reveal if our model calculations are similar to empirical
observations; a discrepancy would be reason for further investigation.

Construction of a physically representative Monte Carlo model will illustrate both the generic
Monte Carlo concept, and provide a numerical model that can be further invoked to exhibit
the differences between foot-by-foot and layer average uncertainties.

Phi(Rhob) is deduced from the various input attributes according to the following.
Rhob = Rhof * Phi(Rhob) + Rhog * [1 - Phi(Rhob)]
Uncertainty is present in each of the three input quantities: Rhob, Rhof and Rhog.

Consider for the moment a calcite — dolomite mineral mix, for which the exact concentration is
uncertain to 10 %. If the endpoint grain densities are taken as 2.71 gm/cc and 2.87 gm/cc, we
calculate the following mixed results.

e Rhog(90 % calcite < 10 % dolomite) = 2.726 gm/cc
e Rhog(10 % calcite < 90 % dolomite) = 2.854 gm/cc
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If the interval is thought to be 100 % calcite, the grain density could in fact be 2.726 gm/cc, or
some 0.016 gm/cc larger than assumed. At the other end of the spectrum, if the interval is
thought to be 100 % dolomite, the grain density could in fact be 2.854 gm/cc, or some 0.016
gm/cc lower than assumed. At the simplest level there is about 0.03 gm/cc uncertainty in Rhog.
Recalling that +/- two standard deviations will encompass 95 % of the “noise”, we are
prompted to take the standard deviation of Rhog to be [0.03 gm/cc] / 4 ~ 0.0075 gm/cc.

Fluid density Rhof is dependent upon the relative amounts of mud filtrate, connate water and
hydrocarbon, in addition to temperature and pressure. For the purposes of illustration, let us
take the mud filtrate to be 50 kppm and the connate water as 150 kppm (similar to many
Middle East environments). At reservoir conditions the corresponding densities would be about
1.011 gm/cc and 1.085 gm/cc.

If the hydrocarbon density is taken as 0.700 gm/cc, the specification of the relative
concentrations, and associated individual uncertainties, will characterize the average fluid
density and its uncertainty.

[llustrative concentrations yield the following fluid densities.
e Rhof(80% MF, 0 % CW, 20 % Unflushed Hydrocarbon) = 0.949 gm/cc.
e Rhof(60% MF, 20 % CW, 20 % Unflushed Hydrocarbon) = 0.964 gm/cc.
e Rhof(40% MF, 40 % CW, 20 % Unflushed Hydrocarbon) = 0.978 gm/cc.
e Rhof(20% MF, 20 % CW, 20 % Unflushed Hydrocarbon) = 0.993 gm/cc.

Mud filtrate invasion and displacement of connate water and hydrocarbon can be a fairly
complicated and variable situation (David Allen, 2005), and the assignment of locally specific
values deserves some careful consideration. For illustration purposes we have taken the Rhof
uncertainty in these calculations to be 0.05 gm/cc. Two standard deviations high and low will
encompass 95 % of the “noise”, so that the example standard deviation is taken as [0.05 gm/cc]
/4=0.125 gm/cc.

Modern bulk density tools will typically repeat fairly good, and one public domain uncertainty
value on a single Rhob measurement is + / - 0.01 gm/cc, corresponding to a standard deviation
of [0.02 gm/cc] / 4 = 0.005 gm/cc.

With the above assumptions, we find that the largest standard deviation is that of Rhof, driven
by the uncertainty associated with the invasion process. Because the pore volume is likely only
one quarter the bulk volume (or less), however, the impact of Rhof on the ultimate porosity
estimate is discounted relative to the uncertainty of Rhog (because grain volume is larger than
fluid volume).
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are calculated on the independent Monte Carlo simulations and compared to the
independent model specifications. Agreement confirms that the MC population is

representative.

In practice there could be an additional QC point; one would cross-check the Monte Carlo
distribution (based upon locally appropriate specifications) against empirically observed Main

— Repeat Pass measurements.

In examining the MIC model results another advantage of simulation surfaces (beyond this
discussion), where we notice that the 95 % result boundary is considerably narrower than is

the (common) High — Low Deterministic Estimation: Figure 6.

*Uncertainty modeling serves multiple purposes Monte Carlo Statistics

. . Cross-check Specs  Monte Carlo Results
*When the observed tool measurement ‘noise’ is Rhob Phi(Rhob)
similar to model results, we assume that we Mean Std_Dev Mean  Std_Dev
correctly understand the various, individual 2400 0.0051 0.181  0.0048
uncertainties. RhoG RhoF
. GrmvmFramt . Mean Std_Dev  Mean  Std_Dev
*The standard deviation of the ‘noise’ provides 5710 00074 1000 00123

probability limits on what can be expected, one
independent run to the next.

*The 95% probability bound will often be considerably tighter than the High / Low
calculation results (typical non-statistical error estimation protocol), indicating that our
calculations are likely better defined than a High / Low analysis would suggest.

*By varying, one after another, the uncertainty assigned to each individual input
attribute, we can recognize which input parameter dominates the output uncertainty, and
therefore where our focus should be in an effort to improve the evaluation.
High-Low Numerical Statistics
Phi Range for Low Rhob
0.1773 0.1826  0.1914

Phi Range for High Rhob
0.1657

Figure 6

LowRhoG_LowRhoF
Phi(Rhob) 0.181
Max Delta Phi
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This happens because it is
unlikely (but not impossible)
that the individual variations
which yield the High (or Low)
value will all occur
simultaneously. Our estimates
are typically better than a
High — Low calculation will
indicate.

We should be aware that
while Monte Carlo modeling
normally assumes
independence of the various
attributes, that is not always
the case.
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Figure 7. ST 7 ¢ v light hydrocarbon effect dependence
#(D) upon porosity.

Jerry Lucia (2004) tells us
“The common claim that dolomitization creates 12% porosity is based on the mole-for-mole
replacement equation. Over the past 50 years data have been collected demonstrating that
........... porosity can be reduced by over dolomitization.”

Another example of a possible correlation is that of light hydrocarbon effects and porosity
magnitude: Figure 7. The crossplot is of Phi(Rhob) — Phi(Neutron) vs Phi(Rhob) in a limestone
reservoir. As porosity increases so too does the difference in the Density and Neutron,
reflecting the different depths of invasion (higher porosity typically invades less deeply) and the
correspondingly different light hydrocarbon effects on the two tools, which have their
individual depths of investigation. This graphic also illustrates why the GOC might be more
obvious in higher porosities than in tighter rock.

Given that the interval is known to be limestone, we realize that the light hydrocarbon
identification / correction algorithm will need to be variable, or else there will be an
unaccounted for effect in the final estimate, that correlates with the porosity magnitude.

In light of carbonate pore system complexity and variation, we realize that one also needs to be
alert for variations (and correlations) in the cementation exponent as discussed by Focke and
Munn (1987).

In summary, construction of the MC model and interpretation of the “noise” in empirically
observed results is more than simply “plugging and chugging”. Which is why a good
petrophysicist cannot be replaced by a computer.
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Foot-by-foot versus Layer Averages
The difference between
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single layer et e 0 / 5 superimposed upon that sine
average. il 7 Vv curve: Figure 8.
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shor  &hos  [NNEIN RhoG r\-\..:-' Rhod RhoG  RhoF  AhoB ﬁ g f y_
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average simulations: Figure 9.

So long as the Main <> Repeat Pass differences are “noise” and not “bias”, they will tend to
average out across the repeat interval. In some instances the Main Pass will be high to the
Repeat Pass, and in others low, as seen in the Delta column of Figure 9.

Even though the standard

deviation of the “noise” in the
Main Pass is 0.0048, the layer
average difference in Main <
Repeat never exceeds 0.001

and is often considerably less.

/ Delta A%omsity Distribution
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If we don’t have the
information or time to
construct a locally appropriate
MC model, we could rely upon

.. . *Each time the _/ \-
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Main < Repeat statistical

-0.0006 | re-seeded and the Delta Average Porosity
attributes. Once the locally 0.0009 | estimates will change.
appropriate spreadsheet is set -Mu‘ltiple fO(_)t-O)'l-fOOt MC rea_lizatiops are generated and compared to characterize
. the ‘uncertainty’ associated with a single layer average.
up, whether by empirical +The standard deviation of the various layer average estimates is considerably smaller
observation or MC simulation, than that of the foot-by-foot simulation, indicating that layer averages are better

hitting the F9 key will cause LG

Excel to recalculate and allow us to visually page through the various possibilities.
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At the foot-by-foot level, there is 95 %
probability that the porosity calculation is correct
to within +/- 0.096 (+/- 2 * 0.0048).

At the layer average level (as for reserves
estimation), there is 95 % probability that the
porosity is correct to within +/- 0.0012 (+/- 2 *
0.0006).

*So long as the ‘noise’ is random,
Layer Averages (such as used for
reserves estimation) are significantly
better known than Foot-by-Foot
estimations.

*Quantitative interpretation of actual
petrophysical log repeats can not
only serve to QC the basic
measurement, but to also
characterize the uncertainty in both
foot-by-foot and average value

calculations. I_
Figure 10
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In the case at hand, there
is 95 % probability that the
porosity calculation is
correct to within +/- 0.096
(+/- 2 * 0.0048) at the
foot-by-foot level: Figure
10.

At the layer average level

(as for reserves
estimation), there is 95 %
probability that the

porosity is correct to
within +/- 0.0012 (+/- 2 *
0.0006).

So long as the ‘noise’ is
random, Layer Averages
(such as used for reserves
estimation) are

significantly better known than Foot-by-Foot estimations. Quantitative interpretation of
actual petrophysical log repeats can not only serve to QC the basic measurement, but to also
characterize the uncertainty in both foot-by-foot and average value calculations.

The reason for the convergence of the layer averages is perhaps more apparent if the sine
curve is flattened: Figure 11. The spreadsheet contains a Hi_Low setting that controls the range

of the sine curve;
when Hi_Low is set to
0.0, representing a bed
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*Restrict the calculation to one- In the Oil Field we seldom

IEOTESIDEE R have intervals of constant
*Foot-by-foot standard deviation . .
(red trace at left) is 0.0048, porosity, or complete sine

corresponding to a 95 % curve cycles, but so long as

Porosity

0 o} 0 0
Q A q @
o]

= phifhob)
— i)

probablllty I‘ange Of +/' 00096 the ”noise” is random, there
\ «Standard deviation of the will be high and low

average porosity across the same . A

interval, per ten independent estimates which surround the

simulations, is 0.0012, individual foot-by-foot values,

corresponding to a 95 %

and the layer average will

probability range of +/- 0.0024

o : : smooth out the “noise”:

- Deltafige Porosity Distribution *There is less uncerta“']ty R
° in the average values, Figure 12.
8 ' than in the foot-by-foot

s results.

: | Figure 12
0 -

0.03 0.02 0.01 0.00 0.01 0.02 0.03

Delta Average Porosity
Caution

In many cases we won’t have the time or information necessary to model a tool response, and
will then revert to use of the empirically observed Main <> Repeat Pass traces to characterize
the “noise” present in a specific measurement. In so doing, we must make sure that we have
made every effort to recognize and eliminate (or account for) “bias”.

Bias can arise for several reasons, with poor depth control being one of the first issues that
comes to mind. When the Main and Repeat Passes are put on depth, prior to the statistical
characterization, we

need to consider *GR _1iswireline; GR_LWD is  |:----- =120 g
measured while drilling and 1 . LT g i
_________________ 14 |taoscocoocoobilR cooaccocooggl| 137 |}
supplemental reflects the effect of stress. i R = - B by
information as « LWD / WL on depth in upper > =

appropriate. interval (relatively high ROP).

« Depth discrepancy mid-way
through well (note low ROP).

- 6850 o

Myeehotshon oy oot

Figure 13 compares

A

the GTR that was « Back on depth at bottom of well ¢
acquired while (high ROP) - interval not included
drilling, with the drill in this exhibit s : ;
string stressed and « Compression / Torquing / £t :
torqued, against the Bowing have temporarily 3 } - 7050
GR from the pipe- shortened the Drill Pipe causin i, |
GR depth mismatch. 7 |
conveyed logs (stress » Sticking and Yo-yoing can g % |
an(.:i ’Forque re:Iz.;\xed). compromise comparison of Main- [ i 7 R
Drilling conditions Repeat Passes in wireline data; { !
have “wrapped up” Changing drill string dynamics §
about three feet of can compromise Main-Repeat A ; | 71504 '
comparison in LWD data. If o :
CYNE Figure 13
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Invasion, Light Hydrocarbon Effect and Lag Time
* Density - neutron separation versus formation penetration time lag.

* Light hydrocarbon effect (density - neutron separation) and logging
delay (time after bit penetration) have some correlation.

the pipe, such that the
actual depth along the
wellbore with the LWD
measurement is less than

the length of pipe that has

* ®(D) & ¢(N) approach one another with increased time (invasion).
been run in the hole. Above

» Comparison of multiple log

_ and below the slow drilling
runs may be compromised by

(high stress) interval, LWD

The interval is definitely calcite and we
therefore expect ¢(D) = ¢(N).

time dependent light and pipe-conveyed

o(N)

hydrocarbon effects (especially

an issue with LWD). measurements are on

(D) depth.
. Invasion is another potential
“bias” effect. The reservoir

in Figure 14 is a light oil
limestone, with porosity
from the density and
neutron contrasted as a

$(D) ~ &(N)
@ ~ 3.5 hours

‘ Time delay (minutes) ‘

Figure 14

function of lag time. The measurements are LWD and the combination of tool dimensions and
drilling penetration rate allow one to calculate the time lapse between penetration of the
formation by the bit (first exposure to mud filtrate) and the measurements.

Since the interval is known to be limestone, we expect Phi(Density) ~ Phi(Neutron), and indeed
we find the extrapolation (in time) of the porosity difference to trend in exactly that direction.
In practice, however, much of the data is light hydrocarbon affected in an amount which
depends upon the lag time.

In some cases we may not be able to completely eliminate the possibility of bias, but that
does not mean we should discount the utility of quantitative comparison of Main < Repeat
Passes. Rather we should carry along with the evaluation, comments and attributes that are
thought to be factors. As the data base grows we then expect a convergence of results; if this
doesn’t happen then we have over-looked something.

3-D Uncertainties
As a petrophysicist, our focus is typically on the foot-by-foot and layer average results.
Downstream of us, though, someone is likely going to initialize a simulator, or calculate
reserves, and at this point the layer averages and associated statistical properties will be of
interest.

As discussed above, the layer average “noise” may not be the same for each of the various
average estimates. The tool generation, tool suite, service company, etc may be different with
each having its own specific characteristics.

If the maps are manually drawn, or computer drawn and then manually edited, the geologist
may reference the individual layer average statistics in determining how closely a particular
contour can be expected to agree with a single well value.
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Alternatively, many practitioners will address the question with geo-statistical package, where
the uncertainty issues are a part of the extrapolation / in-filling.

An over-view of the options is discussed by Raghu Ramamoorthy at www.SPWLA-
AbuDhabi.com, in “Well Data Uncertainty and its role in the Static Model”.

Summary
In most evaluations, the Log Repeat seldom receives any detailed attention beyond possibly a
simple comment such as ‘repeat looks reasonable’. Were we to take the time to digitally load
the Repeat and compare it to the Main Pass in both the foot-by-foot and average value sense,
we would be able to not only better QC each logging run individually, but also estimate the
uncertainty present in the layer average values.

“Noise” tends to average out, and as a result layer averages may be much better known (and
our reserves calculation more accurate) than the foot-by-foot deviations would suggest.

The effect has been illustrated by construction of a physically realistic Monte Carlo Phi(Rhob)
model, followed by characterization of the simple statistics associated with both foot-by-foot
and layer average estimates.

Cautions to be exercised include the following.

e The “noise” must be random and not a “bias”.
e Inthe case of a legacy database, or one which includes multiple service companies, we
should be alert for possible variations in tool performance across time and vendor.

e Most of our interpretations “assume” some kind of “model” (mathematical relation),
and the potential for an inappropriate “model” should not be over-looked.

e Inthe quest for Model Improvement, we should recognize that it is quite possible that
different input attributes have different impacts (more or less) on the final estimate,
and that the Biggest Bang for the Buck should be determined for each locally specific set
of conditions.

In any case there is value in routinely establishing the simple statistical attributes of the
observed Main vs Repeat pass log traces at both the foot-by-foot and layer average levels.
The focus of uncertainty calculations is typically at the foot-by-foot level, and we may very
well find that our layer averages are better known.
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